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Optimization System for Energy Management
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1



Optimization Model for Energy Management
▶ two-stage:

▶ multi-stage:
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Optimization Model for Energy Management

▶ Decisions are inter-correlated

▶ Several methods exist to solve this difficult problem
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Dealing with Trees

▶ For statistical representativity, the scenario tree should be large

▶ For computation tractability, the scenario tree should be small

Stakes
▶ How to reduce trees while keeping good representativity?

▶ How to compare trees with different size and structure?
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The scenario tree reduction problem
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The (Discrete) Wasserstein Distance

We focus on discrete probability measures based on

finitely many R atoms supp(µ) := {ξ1, . . . , ξR}

finitely many S atoms supp(ν) := {ζ1, . . . , ζS},

i.e., the supports are finite and thus the measures are given by

µ =
R∑

r=1

prδξr and ν =
S∑

s=1

qsδζs

The Wasserstein distance - discrete setting
The 2-Wassestein distance between µ and ν is:

W (µ, ν) :=

(
min

π∈U(µ,ν)

R∑
r=1

S∑
s=1

∥ξr − ζs∥2πrs

)1/2

with

U(µ, ν) :=

{
π ≥ 0

∣∣∣∣ ∑R
r=1 πrs = qs, s = 1, . . . , S∑S
s=1 πrs = pr, r = 1, . . . , R

}

6



Distance between processes

▶ Two stage trees can be represented as discrete
probability measures

▶ Multi stage trees have
filtration

Challenge
We need to employ an extension of the Wasserstein distance to random processes.
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Distance between processes

Let two T-period scenario trees with set of nodes N , N ′:

▶ The ancestors of n ∈ N are A(n).

▶ The distance between two nodes at stage t, is
dn1,n2

.

▶ The transport mass between nodes at stage t, is
noted πi,j or π(i, j).

The Nested Distance2

The process distance of order 2 between P and P′ is the square root of the
optimal value of the following LP:

ND(P,P′) :=



min
π

∑
i∈NT ,j∈N ′

T

π(i, j)di,j
2

s.t.
∑
{j:n∈A(j)} π(i, j|m,n) = P (i|m), (m ∈ A(i), n)∑
{i:m∈A(i)} π(i, j|m,n) = P ′(j|n), (n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1.

(1)

2GC Pflug, A Pichler 2012
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Kovacevic and Pichler’s algorithm (KP)

KP algorithm: to approximate a tree, a smaller tree with a given filtration is improved in order
to minimize the distance with the original tree. The probabilities and the scenario values are
alternatively optimized until convergence.
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Probability Optimization

Given the stochastic process quantizers {ξ′(n) ∈ Ξ : n ∈ N ′} and structure of (N ′, A′), we are

looking for the optimal probability measure P ′ to approximate P :=((Ξ)T+1,F, P ), regarding

the nested distance.

Recursive Problem



min
π

∑
m∈Nt

π(m,n)
∑

i∈m+,j∈n+ π(i, j|m,n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m,n) = P (i|m), (i ∈ m+)∑
i∈m+ π(i, j|m,n) =

∑
i∈m̃+ π(i, j|m̃, n), (j ∈ n + and m, m̃ ∈ Nt)

π(i, j|m,n) ≥ 0.
(RP)

▶ Computationally expensive due to the solving of potentially large-scale LPs
repeatedly. Can be untractable for large-scale scenario trees.
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Wasserstein Barycenter (WB) within the KP Algorithm

▶ In the scenario reduction problem we seek P′ (with given filtration F ′t) that
minimizes ND(P,P′)

The steps of the KP algorithm are Wasserstein Barycenter (WB) problems

(left) Original tree, (right) Approximated tree. The probabilities (P (n7|n3), P (n8|n3))
are computed as the Wasserstein barycenter of the set of (known) red probabilities
associated to the boxed subtrees on the left.

11



The Wasserstein barycenter problem
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Motivations

30 artificial images

Barycenters using

(a) Euclidean distance

(b) Euclidean + re-centering

(c) Jeffrey centroid

(d) RKHS distance

(e) 2-Wasserstein distance:

Wasserstein barycenter

a

aM. Cuturi, A. Doucet, 2014
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Discrete Wasserstein Barycenter

Discrete Wassertein Barycenter - WB
A Wassertein barycenter of a set of M discrete probability measures νm ∈ P(Ω),
m = 1, . . . ,M , is a solution to the following optimization problem

min
µ∈P(Ω)

M∑
m=1

αmW ι
ι (µ, ν

m)

where
∑M

m=1 αm = 1, αm > 0 for m = 1, . . . ,M

▶ The evaluation of the barycenter distance already requires to solve M
Wasserstein distance optimization problems!
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Discrete Wasserstein Barycenter

Recall µ =
∑R

r=1 prδξr

Discrete Wassertein Barycenter - WB
A Wasserstein barycenter of a set of M discrete probability measures νm,
m = 1, . . . ,M , is a solution to the LP

min
p,π≥0

M∑
m=1

αm

R∑
r=1

Sm∑
s=1

∥ξr − ζms ∥ιιπ
m
rs

s.t.
R∑

r=1

πm
rs = qms , s = 1, . . . , Sm, m = 1, . . . ,M

Sm∑
s=1

πm
rs = pr, r = 1, . . . , R, m = 1, . . . ,M

▶ This LP scales exponentially in the number M of measures [3]

▶ If M = 100 S(m) = 3600, m = 1, . . . ,M (corresponding to figures with 60× 60
pixels), the above LP has 1.2574 · 1010 variables and 3.5288 · 106 constraints.

3S. Borgwardt. Operational Research (2022)
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A vast body of the literature deals with inexact WBs

Inexact approaches

▶ Mostly based on reformulations via an entropic regularization: several papers
by M. Cuturi, G. Peyré, G. Carlier and others

▶ Block-coordinate approach: fix the support and optimize the probability, then
fix the probability and optimize the support [4, 5, 6]

▶ Other approaches [7,8,9]

Exact methods

▶ Methods for computing exact WBs are based on linear programming
techniques and thus applicable to applications of moderate sizes [10,11]

4M. Cuturi, A. Doucet. JMLR, 2014
5J. Ye, J. Li. IEEE ICP (214)
6J. Ye et al. IEEE Transactions on Signal Processing (2017)
7G. Puccetti, L. Ruschendorf, S. Vanduffe. JMVA (2020)
8S. Borgwardt. Operational Research (2022)
9J. von Lindheim. COAP (2023)

10S. Borgwardt, S. Patterson (2020). INFORM J. Optimization
11J. Altschuler, E. Adsera. JMLR (2021)
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Our contribution

We provide an easy-to-implement, memory efficient and parallelizable algorithm
based on the Douglas-Rachford splitting scheme to compute a solution to LPs of
the form 

min
p,π≥0

M∑
m=1

R∑
r=1

Sm∑
s=1

dmrsπ
m
rs

s.t.
R∑

r=1

πm
rs = qms , s = 1, . . . , Sm, m = 1, . . . ,M

Sm∑
s=1

πm
rs = pr, r = 1, . . . , R, m = 1, . . . ,M

with given dm ∈ RR×Sm
(e.g. dmrs := αm∥ξr − ζms ∥ιι)

Observe that we can drop the vector p.

17





min
π≥0

M∑
m=1

R∑
r=1

Sm∑
s=1

d
m
rsπ

m
rs

s.t.
R∑

r=1

π
1
rs = q

1
s , s = 1, . . . , S

1

.

.

.
R∑

r=1

π
M
rs = q

M
s , s = 1, . . . , S

M

S1∑
s=1

π
1
rs = · · · =

SM∑
s=1

π
M
rs , r = 1, . . . , R

≡



min
π

M∑
m=1

⟨dm, π
m⟩

s.t. π
1 ∈ Π

m

.

.

.

π
M ∈ Π

M

π ∈ B

This LP can be solved by the Douglas-Rachford splitting (DR) method

Given an initial point θ0 = (θ1,0, . . . , θM,0) and prox-parameter ρ > 0:

DR algorithm



πk+1 = ProjB(θk) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ explicit

π̂k+1 = arg min
πm∈Πm

m=1,...,M

M∑
m=1

⟨dm, π
m⟩ +

ρ

2
∥π − (2πk+1 − θk)∥2 −−→ proj. simplex

θk+1 = θk + π̂k+1 − πk+1

{πk} converges to a solution to the above LP [12]

12H.H. Bauschke, P.L. Combettes. Chapter 25. (2017)
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The Method of Averaged Marginals (MAM)

MAM is a specialization of the DR algorithm applied to the WB problem

Easy-to-implement and memory efficient algorithm to compute WBs

MAM algorithm
1: Input: initial plan π = (π1, . . . , πm) and parameter ρ > 0

2: Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

3: while not converged do

4: p←
∑M

m=1 ampm ▷ Average the marginals

5: for m = 1, . . . ,M do
6: for s = 1, . . . , Sm do

7: πm
:s ← Proj∆(qms )

(
πm
:s + 2 p−pm

Sm − 1
ρ
dm:s

)
− p−pm

Sm

8: end for
9: pm ←

∑Sm

s=1 πm
:s ▷ Update the mth marginal

10: end for

11: end while

▶ This algorithm is parallelizable and can run in a randomized manner...

▶ MAM asymptotically computes Wasserstein barycenter.

▶ MAM randomized computes almost surely Wasserstein barycenter.

19



Numerical experiments: fixed support R = 1600
We benchmark MAM, randomized MAM, and IBP (Iterative Bregman Projection of [13]) on
the MNIST database with M = 100 images of 40 × 40 pixels. LP’s dimension: 256 001 600
variables and 320 000 constraints

13[J.-D. Benamou et al. SIAM Journal on Scientific Computing. (2015)]
20



Quantitative comparisons - Fixed support R = 1600

Evolution with respect to time of the difference between the Wasserstein barycenter distance of

an approximation, W̄2
2 (pk), and the Wasserstein barycentric distance of the exact solution

W̄2
2 (pexact) given by the LP. The time step between two points is 30 seconds

21



Take-away messages

▶ New easy-to-implement and memory efficient algorithm for computing WBs,
which is parallelizable and can run in a randomized manner if necessary

▶ It can be applied to both balanced WB and unbalanced WB problems upon
setting a single parameter

▶ It can be applied to the fixed or free-support settings (optimization on
probability and support)

▶ It can handle convex constraints on the barycenter mass p

▶ For nonconvex constraints, we extended MAM using the DC setting.

Contributions
▶ SIAM Journal on Mathematics of Data Science 2024 (published): D. Mimouni, P.

Malisani, J. Zhu, and W. de Oliveira. Computing Wasserstein barycenters via operator

splitting: The method of averaged marginals.

▶ opensource code:
https://github.com/dan-mim/Computing-Wasserstein-Barycenters-MAM

▶ International conferences: EUROPT 2024 (with W. de Oliveira), ISMP 2024

▶ National events: PGMO 2023, CIROQUO 2023
22
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Wasserstein Barycenter (WB) within the KP Algorithm

▶ In the scenario reduction problem with seek P′ (with given filtration F ′t) that
minimizes ND(P,P′)

The steps of the KP algorithm are WB problems

(left) Original tree, (right) Approximated tree. The probabilities (P (n7|n3), P (n8|n3))
are computed as the Wasserstein barycenter of the set of (known) red probabilities
associated to the boxed subtrees on the left.
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Boosted KP Algorithm

Scenario tree reduction via nested distance and
Wasserstein barycenters

▷ Step 0: input

1: Let the original scenario tree P = (ΞT+1,F, P ) and a smaller scenario tree P
′0 =

(ΞT+1,F′, P
′0) be given.

2: Choose a tolerance Tol > 0

3: for k = 0, 1, 2, . . . do
▷ Step 1: Improve the scenario values (quantizers)

4: If ι = 2 use an analytic solution otherwise do a gradiant descent.

▷ Step 2: Improve the probabilities
5: for t = T − 1, . . . , 0 do ▷ Recursivity
6: for all n ∈ N ′

t do ▷ Wasserstein barycenters

7: Set αn
m ← πk(m,n), m ∈ Nt

8: Use IBP, or MAM to compute πk+1(·, ·|·, n)
9: end for

10: end for

▷ Step 3: Stopping test

11: if δkι (0, 0)− δk+1
ι (0, 0) ≤ Tol then

12: Define P ′(nT ) =
∑

mT ∈NT
πk+1(mT , nT ) for all nT ∈ N ′

T then P ′(n) =∑
j∈n+ P ′(j) for all n ∈ N ′

t , t ̸= T

13: Set NDι(P,P′)← δk+1
ι (0, 0)

14: Stop and return with the reduced tree P
′

= (ΞT+1,F′, P ′) and nested distance
NDι(P,P′)

15: end if
16: end for

24



Reduction scenario applications
Scenario tree reduction employing different solvers to compute the WBs:

▶ A classic LP : KP algorithm + LP,

▶ Iterative Bregmann Projection (IBP) 14 : KP algorithm + IBP,

▶ Method of Averaged Marginals (MAM)15 : KP algorithm + MAM.

Evolution of the Nested Distance along the reduction iterations for different initial trees.

14see the work of D. Bennammou and G. Peyré
15see the work of Mimouni, Malisani, Zhu, de Oliveira
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Reduction scenario applications

Evolution of the Nested Distance along the reduction iterations for different initial trees with a
zoom.

Scenarios LP IBP MAM MAM 4 processors
216→16 0.17 0.49 2.21 0.56
1296→32 1.54 14.83 18.23 6.28
7776→ 64 74.25 161.19 344.83 124.44

15625→ 128 487.58 323.76 816.46 341.62
46656→ 128 4905 2136 2541 1256
78125→ 256 13797 4334 3458 1635

Table: Total time (in seconds) per method for the studied trees. 26



Take-away messages

▶ New approach to tackle scenario tree reduction

▶ New easy-to-implement and memory efficient algorithm for reducing scenario
trees

▶ Can leverage parallelization of transport optimal techniques

▶ Makes more accessible (because more efficient) a technique that keeps
maximal information from the initial modelization

Contribution
▶ Annals of Operations Research 2025 (submitted): D. Mimouni, P.

Malisani, J. Zhu, and W. de Oliveira. Scenario tree reduction via Wasserstein
barycenters.
▶ opensource code: https://github.com/dan-mim/Nested_tree_reduction

▶ International conference: ICSP 2025

▶ National conference: PGMO 2024
27
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Solving EMS problems
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Optimization Model for Multistage Energy Management

Battery
Cons

PV

Pb(t)

The effective power demand:

Pm(t) = Cons(t)−PV(t) +
1

ρc
max{Pb(t), 0}+ ρd min{Pb(t), 0}

Bill
The electricity bill to minimize:

Jt1:t2 (Pb,Cons,PV) :=

∫ t2

t1

pcr(t)max{Pm(t), 0}+ pdr(t)min{Pm(t), 0}dt

which, in our setting, is a convex function of Pb.

The battery’s dynamics are governed by the constraints C:

Ė(t) = Pb(t)

and the operational constraints of the battery’s charging/discharging process are

0 < E < 13 kWh,

−8 < Pb < 8ρc kW

E(t1) = E(t2) = E0

29



Model Predictive Control (MPC)

MPC solves a deterministic optimization problem

▶ Currently used

MPC
One of the most used model.

▶ MPC predicts a realization (Ĉons and P̂V) of the random variables Cons and
PV

Solves:
min
Pb∈C

Jt:t+∆T (Pb, Ĉons, P̂V) (MPC)

▶ Easy to implement

▶ Solution can be of poor quality depending on the accuracy of Ĉons and P̂V

30



Scenario-based modelization

Scenario based models are studied to manage the multistage EMS problem.

Scenarios
The following models rely on a finite set of scenarios:

ΞS
t1:t2

:=
{
ξs := Conss − PVs : s = 1, . . . , S

}
(2)

▶ Each scenario, ξs, is associated to a probability ps > 0, satisfying∑S
s=1 ps = 1

▶ The more scenarios the better representativity but the harder the problem

31



Deterministic Control for SP

DSP computes a single control policy that minimizes the expected cost across all
scenarios

▶ We look for an optimal control Pb for all scenarios

DSP

inf
Pb∈C

[
S∑

s=1

psJt1:t2 (Pb,Conss,PVs)

]
, (DSP)

▶ Can be solved using standard control methods such as [16]

▶ DSP is numerically tractable even when using a large number of scenarios

16Malisani, P. (2024). Interior point methods in optimal control. ESAIM: Control,
Optimisation and Calculus of Variations, 30, 59.
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Stochastic Programming (SP)

SP optimizes expected cost over known scenarios

▶ We look for an optimal control P s
b for each scenario.

▶ the controls undergo a non-anticipativity constraint N

SP

inf
Pb∈C
Pb∈N

[
S∑

s=1

psJ(Pb(s),Conss,PVs)

]
(SP)

▶ ps is the probability of the scenario s

▶ Requires estimation of probability distribution.

▶ A possible algorithm: Progressive Hedging Algorithm (PHA).

33



Robust Optimization (RO)

RO assumes the worst-case scenario among all the possible outcomes.

RO
Minimization of the cost under worst-case scenario:

inf
Pb∈C
Pb∈N

max
s∈{1,...,S}

J(Pb(s),Conss,PVs) (RO)

▶ Overly conservative in general.

34



Distributional Robust Optimization (DRO)
DRO optimizes against worst-case distribution in an ambiguity set.

DRO

inf
Pb∈C
Pb∈N

sup
q∈Pθ

[
S∑

s=1

qsJ(Pb(s),Conss,PVs)

]
(DRO)

▶ The scenarios are fixed but DRO optimize over the worst distribution of
weights of the scenarios within an ambiguity set.

Wasserstein-based ambiguity sets.

Pθ :=

{
q ∈ RS

+ :
∑
s

qs = 1,W2

(
S∑

s=1

qsδξs ,
L∑

l=1

plδξl

)
≤ θ

}
where W2 is the 2-Wasserstein distance: a distance between probability measures

▶ θ controls the size of Pθ,

▶ large values of θ can lead to RO

▶ small values of θ can lead to SP

▶ A possible algorithm for multistage DRO: SDAP17.

17van Ackooij, W. S., and de Oliveira, W. L. (2025). Scenario Decomposition with
Alternating Projections. In Methods of Nonsmooth Optimization in Stochastic Programming
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Stochastic Programming with Variance Penalization (VSP)

VSP introduces a variance regularization into SP.

VSP

inf
Pb∈C
Pb∈N

[ S∑
s=1

psJt1:t2 (Pb(s),Conss,PVs)

+
α

2

S∑
s=1

ps∥Pb(s)−
∑S

s′=1 ps′Pb(s
′)∥2

L2

]
(VSP)

▶ α = 0: VSP is equivalent to SP

▶ α = ∞: VSP is equivalent to DSP

▶ Trade-off parameter α controls robustness.

▶ Solved via Regularized Progressive Hedging (RPHA)18.

18Malisani, P., Spagnol, A., and Smis-Michel, V. (2024). Robust stochastic optimization via
regularized PHA: application to Energy Management Systems.
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Reinforcement Learning (RL)
RL learns an optimal behavior by interacting with an environment and receiving
costs from these interactions.
▶ We define a Markov Decision Process as (T ,S,A,P, c)

▶ T = {t1, t1 +∆, . . . , t2} the finite time horizon,
▶ S is the state space:

▶ E ∈ {0, dE, · · · , 13 kWh} is the discretized energy state of the battery,
▶ ξ̄ = Cons − PV ∈ {−8 × 2,−16 + dξ̄, · · · , 16ρc kW} is the difference between

the electricity demand and the solar production
▶ A is the action space where the action Pb is the battery charging power,
▶ P is the transition probability of passing from state s to state s′ given action

a,
▶ c is the cost function : cτ (s, Pb) = pcr(τ)max{P τ

m, 0}+ pdr(τ)min{P τ
m, 0}.

Bellman Equation

RL19 minimizes the Q-function with respect to π

▶ π is the politic : P τ
b = π(τ, s)

Qπ(t, s, Pb) = E

[
t2∑
τ=t

cτ (sτ ,P τ
b ) | st = s,P t

b = Pb

]
. (3)

▶ Learns control policy through experience.
▶ Scenario-free method.

19Weber, L., Bušić, A., and Zhu, J. (2023). Reinforcement learning based demand charge
minimization using energy storage. In 2023 62nd IEEE CDC

37



Models to Methods

▶ MPC
One prediction

▶ DSP
One control for all scenarios

▶ SP → PHA
Assumed distribution

▶ DRO → SDAP
Ambiguity set

▶ VSP → RPHA
Variance penalization

▶ RL
Scenario free model

38



Performance Comparison
▶ After cross-validation for θ in DRO and α in VSP, the methods are tested

over a 2 year period: 2022-01-22 to 2024-01-22.

▶ η(Day) := 100× B−Bill
B

, where B := Billno battery

▶ DSP performs best overall.
▶ RL is competitive with less tuning.
▶ DRO probably limited by the number of scenarios it can deal with.
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Take-away messages

▶ All models have been tested in real conditions over a 2 year period,

▶ DSP is the best model for our EMS problem. DSP is fast to compute and
easy to implement.

Contribution
▶ IEEE Transactions on Control Systems Technology (submitted):

D. Mimouni, J. Zhu, W. de Oliveira, and P. Malisani. A comparative study of
multi-stage stochastic optimization approaches for an energy management
system.
▶ public: https://github.com/dan-mim/EMS-RL-DRO,
▶ industrial: https://gitlab.ifpen.fr/R1150/malisanp

▶ International conference: ICCOPT 2025
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Conclusion
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Contributions

Scenario tree reduction
▶ Annals of Operations Research (submitted): D. Mimouni, P. Malisani, J.

Zhu, and W. de Oliveira. Scenario tree reduction via Wasserstein
barycenters.
▶ opensource code: https://github.com/dan-mim/Nested_tree_reduction

▶ PGMO 2024 – The Gaspard Monge Program for Optimization, Operations
Research and their Interactions with Data Science

▶ ICSP 2025 – Int. Conf. on Stochastic Programming

MAM
▶ SIAM Journal on Mathematics of Data Science 2024 (published):

D. Mimouni, P. Malisani, J. Zhu, and W. de Oliveira. Computing Wasserstein
barycenters via operator splitting: The method of averaged marginals.
▶ opensource code:

https://github.com/dan-mim/Computing-Wasserstein-Barycenters-MAM

▶ CIROQUO 2023

▶ PGMO 2023

▶ EUROPT 2024 - with W. de Oliveira

▶ ISMP 2024 – Int. Symposium on Mathematical Programming

42

https://github.com/dan-mim/Nested_tree_reduction
https://github.com/dan-mim/Computing-Wasserstein-Barycenters-MAM


Contributions

EMS
▶ IEEE Transactions on Control Systems Technology (submitted):

D. Mimouni, J. Zhu, W. de Oliveira, and P. Malisani. A comparative study of
multi-stage stochastic optimization approaches for an energy management
system.
▶ opensource code: https://github.com/dan-mim/EMS-RL-DRO

▶ International conference: ICCOPT 2025 – Int. Conf. on Continuous
Optimization
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Can we go further ?

▶ MAM could be applied in the context of reduced-basis methods for PDEs at
IFPEN

▶ Use the reduced tree for tree-based exploration in reinforcement learning

▶ Include more commonly used models in our comparison for the IFPEN
problem

Other published works: Constrained Barycenter
▶ Pacific Journal of Optimization, special issue for Rockafellar (in press):

D. Mimouni, W. de Oliveira, and G. M. Sempere. On the computation of
constrained Wasserstein barycenters.
▶ opensource code https://github.com/dan-mim/Constrained-Optimal-Transport

▶ International conference: ICSP 2025 - Int. Conference on Stochastic
Programming; with G. Sempere
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�� ��Thank you!

Contact:

B daniel.mimouni1@gmail.com

Ï https://dan-mim.github.io
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