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Some context

Multistage stochastic optimization problem

val(ξ) := min
u1

c1(x1, u1, ξ1)+min
u2

Eξ2

[
c2(x2, u2, ξ2) + · · ·+min

uT
EξT [cT (xT , uT , ξT )]

]
under the following constraints

xt+1 = ft(xt, ut, ξt) (1a)

(ut, xt) ∈ Kt ⊂ Rm × Rn (1b)

x1 = x0, (1c)

▶ Decision management problems

▶ Multiple solving algorithms exist: MPC, Dynamic programming, Scenario
based methods (Prog. Hedging, SDDP, etc.)

▶ In practice, the scenario process {ξt} is approximated by a scenario tree
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The Scenario Reduction Algorithm
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Kovacevic and Pichler’s algorithm (KP)

▶ For statistical representativity, the scenario tree should be large

▶ For computation tractability, the scenario tree should be small

KP algorithm: to approximate a tree, a smaller tree with a given filtration is improved in order
to minimize the distance with the original tree. The probabilities and the scenaro values are
alternatively optimized until convergence.
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Wasserstein Barycenter (WB) within the KP Algorithm
▶ In the Scenario Reduction problem with seek G (with given filtration F ′

t)
that minimizes dl2(H,G)

▶ Our first contribution is to notice than the steps of the KP algorithm is a
Wasserstein Barycenter problems (WB)

(left) Original tree, (right) Approximated tree. The probabilities (P (n7|n3), P (n8|n3))
are computed as the Wasserstein Barycenter of the set of (known) probabilities
associated to the boxed subtrees on the left.
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Navigate the Wasserstein Barycenter Challenge
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Extension to the WB

The Wasserstein distance
Let (Ω, P ) a probabilty space and two measurable random vectors ξ, ζ : Ω 7→ Rd

such that µ := ξ#P and ν := ζ#P . Their (quadratic) 2-Wasserstein distance is

W2(ξ, ζ) :=

(
inf

π∈U(µ,ν)

∫
Rd×Rd

∥x− y∥2dπ(x, y)
)1/2

, (WD)

Here U(µ, ν) is the set of all probability measures on Rd × Rd having marginals µ
and ν.

Wasserstein Barycenter problem
Given M measures {ν(1), . . . , ν(M)} ⊂ P(Rd) and α ∈ ∆M , an 2-Wasserstein
barycenter with weights α is a solution to the following optimization problem

min
µ∈P(Rd)

M∑
m=1

αmW 2
2 (µ, ν

(m)) . (2)
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Huge scale Linear Program (LP)

WB problem
It boils down to solve a huge LP with MRS +R variables1:

min
p,π

R∑
r=1

S(1)∑
s=1

c
(1)
rs π

(1)
rs + · · ·+

R∑
r=1

S(M)∑
s=1

c
(M)
rs π

(M)
rs

s.t.
∑R

r=1 π
(1)
rs = q

(1)
s , s = 1, . . . , S(1)

. . .
...∑R

r=1 π
(M)
rs = q

(M)
s , s = 1, . . . , S(M)

∑S(1)

s=1 π
(1)
rs = pr, r = 1, . . . , R

. . .
...∑S(M)

s=1 π
(M)
rs = pr, r = 1, . . . , R

p ∈ ∆R, π(1) ≥ 0 · · · π(M) ≥ 0,

1If M = 100 R = S(m) = 1600, m = 1, . . . ,M (corresponding to figures with 40 × 40
pixels), the above LP has 256 001 600 variables.
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Reformulation of the LP

Separable sets

Π(m) :=

{
π(m) ≥ 0 :

R∑
r=1

π
(m)
rs = q

(m)
s , s = 1, . . . , S(m)

}
, m = 1, . . . ,M (3)

and the linear subspace

B :=


π = (π(1), . . . , π(M)) :

∑S(1)

s=1 π
(1)
rs =

∑S(2)

s=1 π
(2)
rs , ∀r∑S(2)

s=1 π
(2)
rs =

∑S(3)

s=1 π
(3)
rs , ∀r

.

..∑S(M−1)

s=1 π
(M−1)
rs =

∑S(M)

s=1 π
(M)
rs , ∀r


(4)
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Douglas-Rachford theory
▶ Consider the indicator function iC of a convex set C, and reformulate the

problem:

f (m)(π(m)) :=
R∑

r=1

S(m)∑
s=1

c
(m)
rs π

(m)
rs + iΠ(m) (π

(m)), m = 1, . . . ,M, (5)

▶ Recast problem:

f(π) :=
M∑

m=1

f (m)(π(m)) and g(x) :=

{
iB(π) if balanced
γ distB(π) if unbalanced.

(6)
▶ Since f is polyhedral, it follows that computing one of its solutions is

equivalent to
find π such that 0 ∈ ∂f(π) + ∂g(π). (7)

Douglas-Rachford algorithm
Given initial point θ0 = (θ(1),0, . . . , θ(M),0) and prox-parameter ρ > 0:

πk+1 = proxg/ρ(θ
k)

π̂k+1 = proxf/ρ(2π
k+1 − θk)

θk+1 = θk + π̂k+1 − πk+1

(8)
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The Method of Averaged Marginals (MAM)

The Douglas Rachford and The MAM Algorithm



πk+1 = ProjB(θ
k)

explicit−−−−−→π
(m)
rs := θ

(m)
rs +

(pkr−p
(m)
r )

S(m)

π̂k+1 :=


π̂
(m)
1s
...

π̂
(m)
Rs

 = Proj
∆R(q

(m)
s )


y1s − 1

ρ
c
(m)
1s

.

..

yRs − 1
ρ
c
(m)
Rs

 , s = 1, . . . , S(m)

θk+1 = θk + π̂k+1 − πk+1

▶ At every iteration the barycenter approximation pk is a weighted average of

the M marginals p(m) :=
∑S(m)

s=1 θ
(m)
rs .

▶ The projection onto the simplex can be accomplished in parallel, exactly and
efficiently by specialized algorithms2.

▶ The whole sequence converges to an exact barycenter.

2see L. Condat 2016
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Qualitative comparisons
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Qualitative comparisons

14



Qualitative comparisons
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Quantitative comparisons

Evolution with respect to time of the difference between the Wasserstein barycenter distance of

an approximation, W̄2
2 (pk), and the Wasserstein barycentric distance of the exact solution

W̄2
2 (pexact) given by the LP. The time step between two points is 30 seconds
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Take-away messages

▶ New algorithm for computing WBs which is parallelizable and can run in a
randomized manner if necessary

▶ It can be applied to both balanced WB and unbalanced WB problems upon
setting a single parameter

▶ It can be applied to the free or fixed-support settings

▶ The method is submitted (after review) in SIAM Journal on Mathematics
and Data Science https://arxiv.org/pdf/2309.05315.pdf

▶ Our Python code is freely available at
https://ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb
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Exploring Utilizations of the Enhanced Scenario
Reduction Algorithm
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Reduction scenario applications

Scenario tree reduction employing different solvers to compute the WBs:

▶ A classic LP (KP setting),

▶ Iterative Bregmann Projection algorithm 3,

▶ MAM.

Evolution of the Nested Distance along the reduction iterations for different initial trees.

3see the work of D. Bennammou and G. Peyré
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Reduction scenario applications

Evolution of the Nested Distance along the reduction iterations for different initial trees with a
zoom.

LP IBP MAM MAM 4 processors
T=4, cpn=6 0.17 0.49 2.21 0.56
T=5, cpn=6 1.54 14.83 18.23 6.28
T=6, cpn=6 74.25 161.19 344.83 124.44
T=7, cpn=5 487.58 323.76 816.46 341.62
T=7, cpn=6 4905 2136 2541 1256
T=8, cpn=5 13797 4334 3458 1635

Table: Total time (in seconds) per method for the studied trees.
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Conclusion

Take-away messages

▶ We developed a new approach to reduce scenario tree, that can deployed even
for very large trees

▶ Our Python code is freely available at
https://ifpen-gitlab.appcollaboratif.fr/detocs/tree_reduction

Valorization of the Research

▶ The MAM algorithm is the subject of a paper submitted to SIAM Journal on
Mathematics and Data Sciences (SIMODS) 4,

▶ Presentation during the PGMO days, the annual conference of the
Optimization, OR, and Data Science program of the FMJH 5,

▶ Presentation of a poster at the Consortium in Applied Mathematics
(CIROQUO)6,

▶ Presentation of a poster during the DATA IA days of CentraleSupelec7,

▶ Presentation of extensions of MAM at the international conference ISMP
2024 (International Symposium on Mathematical Programming8.

4https:

//www.siam.org/publications/journals/siam-journal-on-mathematics-of-data-science-simods
5Fondation Mathématiques Jacques Hadamard:

https://smf.emath.fr/evenements-smf/pgmo-days-2023
6https://ciroquo.ec-lyon.fr/evenements.html
7https://www.dataia.eu/
8https://ismp2024.gerad.ca/ 21
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Annexes
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Distance between processes
▶ How to evaluate such a distance?

The Wasserstein distance
Let (Ω, P ) a probabilty space and two measurable random vectors ξ, ζ : Ω 7→ Rd

such that µ := ξ#P and ν := ζ#P . Their (quadratic) 2-Wasserstein distance is

W2(ξ, ζ) :=

(
inf

π∈U(µ,ν)

∫
Rd×Rd

∥x− y∥2dπ(x, y)
)1/2

, (WD)

Here U(µ, ν) is the set of all probability measures on Rd × Rd having marginals µ
and ν.

The Nested Distance
Let H := (Ξ, (Ft)t, P ) and G := (Z, (F ′

t)t, P ′) be two filtered probability spaces,
Ξ := {ξ(1), . . . , ξ(R)} and Z := {ζ(1), . . . , ζ(S)} are the scenario values. The
process distance of order 2, between the trees H and G is the root square of the
optimal value of the following LP,

dl2(H,G)2 :=



min
π

R∑
i=1

S∑
j=1

∥ξ(i) − ζ(j)∥2ℓ2 π(ξ(i), ζ(j))

s.t. π(M × Z|Ft ⊗F ′
t) = P (M |Ft), (M ∈ FT , t = 0, . . . , T )

π(Ξ×N |Ft ⊗F ′
t) = P ′(N |F ′

t), (N ∈ F ′
T , t = 0, . . . , T )

π ≥ 0.
(ND) 23



Stability Results for ND

Stability result for the ND
Consider the value function val(H) of stochastic optimization problem seen earlier
so that val(H) := val(ξH), and L2 a constant, then it holds9:

|val(H)− val(G)| ≤ L2 · dl2(H,G)2 (9)

▶ It is not the case when using the WD.

9See Pflug and Pichler 2012
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The Nested Distance

The Nested distance for trees
the process distance of order 2, between H and G is the square root of the optimal
value of the following LP,

dl2(H,G) :=



min
π

∑
i∈NT ,j∈N ′

T

πi,jd
2
i,j

s.t.
∑

{j:n∈A(j)} π(i, j|m,n) = P (i|m), (m ∈ A(i), n)∑
{i:m∈A(i)} π(i, j|m,n) = P ′(j|n), (n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1.

(NDT)
This LP can be decomposed into several Optimal Transport problems (OT).
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Unbalanced WB


min
π

M∑
m=1

⟨c(m)
, π

(m)⟩ + γdistB(π)

s.t. π
(1) ∈ Π

(m)
, . . . , π

(M) ∈ Π
(M)
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Exact free-support resolution
▶ All measures share the same finite support: suppose that all measures ν(m) are

supported on a d-dimensional regular grid of integer step sizes in each direction,

each coordinate going from 1 to K: S(m) = S = Kd.

▶ The measures are evenly weighted αm = 1
M , m = 1, . . . ,M

Evolution of the approximated MAM barycenter with time in regards with the exact
barycenter of the Altschuler and Bois-Adsera algorithm computed in 4 hours [10]

10S. Borgwardt, S. Patterson (2020). INFORM J. Optimization 27
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