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À mes parents,
dont le plus beau cadeau a été
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Preface

This document compiles the work accomplished during the three years of my PhD, it has been the result of close
collaboration with Paul Malisani, Jiamin Zhu, and Welington de Oliveira. This manuscript is structured into four
primary sections: one detailing our research on a novel method for computing Wasserstein Barycenters (WB),
a second on extensions of this methods to more complex cases of constraint barycenters, a third presenting our
proposed approach to addressing scenario tree reduction via WBs and finally a complete pipeline to optimize
an industrial Energy Management System. Each of these parts represents an independent scientific contribution.
Considered together, they complement and articulate coherently to provide an effective response to the applied
research problem of energy management.

Introduction for non-specialists

This subsection illustrates, through a simple example, how scenario trees and decision-making under uncertainty
are connected.

Intermittent power sources, such as solar farms, must follow grid integration strategies. Consider a solar panel
farm supplying electricity to a city. The goal is to meet the city’s energy demand at all times. However, solar power
generation depends on unpredictable factors like sunlight and weather. To prevent shortages during low sunlight
periods, the system must be supplemented by more stable electricity sources—for example, nuclear power, which is
common in France.

According to European market regulations, electricity providers must forecast and plan their production and
purchases one day in advance. The solar farm manager must therefore estimate the expected production of the
farm and the city’s electricity consumption for the next day, both represented as probability distributions. Based
on these forecasts, the manager decides how much electricity to purchase from external sources.

Then, throughout the day and at each time step (e.g., every 30 minutes), the manager observes the actual
production and consumption. Decisions must be updated dynamically to maintain the balance between supply and
demand. Three situations can arise:

• Shortfall: If consumption exceeds the sum of solar production and the initially purchased external electricity,
the manager must buy additional electricity at a higher spot-market price.

• Balance with surplus: If the combined production and external supply meet or exceed the demand, the
excess electricity can be stored (e.g., in dams or batteries) for future use.

• Strategic purchase: Even when supply matches demand, the manager may choose to purchase and store
additional electricity if forecasts suggest that doing so now is cheaper than buying it later.

This example highlights how each decision affects future possibilities, forming a chain of interconnected decisions.
The overarching goal of the manager is to minimize total costs over time. This thesis addresses the following question:

What strategy should the manager adopt, given that the future is uncertain and that past observations may differ
significantly from future events?
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Préface

Ce document rassemble les travaux réalisés au cours des trois années de ma thèse, il est le fruit d’une collaboration
étroite avec Paul Malisani, Jiamin Zhu et Welington de Oliveira. Ce manuscrit est structuré en quatre parties
principales : la première présente nos recherches sur une nouvelle méthode de calcul de barycentres de Wasserstein
(BW), la deuxième porte sur les extensions de cette méthode à des cas plus complexes de barycentres contraints,
la troisième expose notre approche proposée pour la réduction d’arbres de scénarios via BWs, et enfin, la dernière
décrit une châıne complète de traitement permettant d’optimiser un système de gestion de l’énergie industriel.
Chacune de ces parties constitue une avancée scientifique indépendante. Considérées ensemble, elles se complètent
et s’articulent de manière cohérente afin d’apporter une réponse efficace au problème énergétique étudié.

Introduction pour les non-spécialistes

Cette sous-section illustre, à travers un exemple simple, comment les arbres de scénarios et la prise de décision en
situation d’incertitude sont liés.

Les sources d’énergie intermittentes, comme les fermes solaires, doivent s’intégrer au réseau électrique selon des
stratégies spécifiques. Considérons une ferme de panneaux solaires qui alimente une ville en électricité. L’objectif est
de satisfaire à tout moment la demande énergétique de la ville. Toutefois, la production solaire dépend de facteurs
imprévisibles comme l’ensoleillement et la météo. Pour éviter les pénuries lors de faibles périodes d’ensoleillement,
le système doit être complété par des sources d’électricité plus stables — par exemple, l’énergie nucléaire, très
présente en France.

Selon les règles du marché européen, les fournisseurs d’électricité doivent prévoir et planifier leur production
et leurs achats la veille pour le lendemain. Le gestionnaire de la ferme solaire doit donc estimer la production
attendue de la ferme ainsi que la consommation électrique de la ville, toutes deux représentées par des distributions
de probabilité. À partir de ces prévisions, il décide de la quantité d’électricité à acheter auprès de sources externes.

Ensuite, au fil de la journée et à chaque instant (par exemple toutes les 30 minutes), le gestionnaire observe la
production et la consommation réelles. Il doit alors adapter ses décisions dynamiquement pour maintenir l’équilibre
entre l’offre et la demande. Trois situations peuvent se présenter :

• Déficit : si la consommation dépasse la somme de la production solaire et de l’électricité externe initialement
achetée, le gestionnaire doit acheter de l’électricité supplémentaire à un prix plus élevé sur le marché spot.

• Équilibre avec surplus : si la production combinée et l’approvisionnement externe couvrent ou dépassent
la demande, l’excédent peut être stocké (par exemple dans des barrages ou des batteries) pour une utilisation
future.

• Achat stratégique : même lorsque l’offre correspond à la demande, le gestionnaire peut choisir d’acheter
et de stocker de l’électricité supplémentaire si les prévisions indiquent qu’il sera moins coûteux de le faire
maintenant que plus tard.

Cet exemple met en évidence le fait que chaque décision influence les décisions futures, formant ainsi une châıne
de choix interconnectés. L’objectif global du gestionnaire est de minimiser les coûts totaux sur l’ensemble de la
période. Cette thèse répond à la question suivante :

Quelle stratégie le gestionnaire doit-il adopter, sachant que le futur est incertain et que les observations passées
peuvent être très différentes des événements à venir ?
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nement constant, sa disponibilité et sa patience, ses conseils toujours avisés, sa bienveillance tout au long de ces
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Je vous réaffirme tout mon amour et vous dédie ces travaux.
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Abstract

Decision making under uncertainty in multistage stochastic optimization poses a substantial challenge, necessitating
a complex trade-off between, on the one hand, the representation of the uncertainties (i.e. the number of scenarios)
and, on the other hand, the computational tractability. Scenario reduction methods, pioneered in 2003 by Dupačová
et al. [52], offer a promising outlooks for achieving a satisfactory trade-off. However, the choice of distance metric for
reducing scenario trees significantly influences solution quality. While clustering techniques have been prevalent, re-
cent research has turned to Wasserstein-based methods to minimize transport distance between probabilty measures.

This work presents a comprehensive investigation of the use of the Wasserstein distance for scenario tree reduction
in the context of multistage stochastic optimization. The Wasserstein Barycenter (WB) problem arises naturally
in this setting: it serves as a tool for summarizing sets of probabilities, it appears in a number of disciplines,
including applied probability, clustering and image processing. Numerically efficient methods to computing WBs
rely on entropic regularization functions, resulting in approximate solutions due to limitations in solver capabilities.
In contrast, this research introduces an exact approach based on the Douglas-Rachford splitting method directly
applied to the WB linear optimization problem. The proposed solving algorithm achieves a trade-off between the
numerical efficiency of regularization-based methods and the precision of exact LP solvers.

This thesis also proposes a novel formulation for the unbalanced optimal transport problem. This formulation leads
to more flexible real-world applications than literature and the proposed WB method can be easily adapted to
tackle unbalanced WB. Another new optimal transport problem is formulated in this thesis: the constrained WB.
The motivations is to find WB laying on smaller support or to keep particular properties that can be very useful
when performing scenario tree reduction. It also finds other applications in image processing or biomedical research
for example. This work propose exact algorithms to handle this problem.

In [70], Kovacevic and Pichler develop an algorithm based on nested Wasserstein distance. As we point out in this
work, this algorithm consists of computing a significant amount of Wasserstein barycenters. The third contribution
of this work is to implement dedicated WB computation algorithms, including the Iterative Bregmann Projection
method (IBP) and the newly introduced Method of Averaged Marginals (MAM) in the algorithm proposed in [70]
to accelerate its performances.

The last contribution of this work is the development of a comprehensive benchmark comparing several optimiza-
tion frameworks—including reinforcement learning, distributionally robust optimization, and stochastic program-
ming—for solving a multistage energy management problem based on ground truth measurements of production and
consumption of an IFPEN’s building in Solaize. We integrate these approaches into a unified software pipeline that
encompasses all key components developed in this thesis, including the scenario tree reduction algorithm enhanced
by optimal transport techniques.
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Résumé

La prise de décision sous incertitude dans les problèmes d’optimisation stochastique multi-étapes constitue un défi
majeur, nécessitant un compromis complexe entre, d’une part, la représentation des incertitudes (c’est-à-dire le
nombre de scénarios) et, d’autre part, la résolvabilité numérique. Les méthodes de réduction de scénarios, intro-
duites en 2003 par Dupačová et al. [52], offrent une piste prometteuse pour atteindre ce compromis. Toutefois, le
choix de la métrique de distance utilisée pour la réduction des arbres de scénarios a un impact significatif sur la
qualité des solutions. Alors que les techniques de regroupement (clustering) sont couramment utilisées, des travaux
récents se tournent vers des méthodes fondées sur la distance de Wasserstein, qui vise à minimiser la distance de
transport entre mesures de probabilité.

Ce travail propose une étude approfondie de l’utilisation de la distance de Wasserstein pour la réduction d’arbres
de scénarios dans le cadre de l’optimisation stochastique multi-étapes. Le problème du barycentre de Wasserstein
(BW) y apparâıt naturellement : il permet de résumer un ensemble de mesures de probabilité et intervient dans
de nombreux domaines, tels que les probabilités appliquées, le regroupement de données et le traitement d’images.
Les méthodes numériques efficaces pour calculer des BWs reposent souvent sur une régularisation entropique, four-
nissant des solutions approchées en raison des limitations des solveurs. En contraste, cette thèse introduit une
méthode exacte fondée sur le schéma de décomposition de Douglas-Rachford, appliqué directement à la formula-
tion linéaire du problème de BW. L’algorithme proposé constitue un compromis entre l’efficacité numérique des
méthodes régularisées et la précision des solveurs linéaires exacts.

Cette thèse propose également une nouvelle formulation du problème de transport optimal déséquilibré. Cette for-
mulation offre une plus grande flexibilité pour des applications concrètes que celles présentes dans la littérature, et la
méthode proposée pour le barycentre de Wasserstein peut être facilement adaptée pour traiter les cas déséquilibrés.
Par ailleurs, un autre problème nouveau de transport optimal est formulé dans cette thèse : le barycentre contraint
(constrained WB). L’objectif est de trouver un barycentre supporté sur un ensemble plus restreint ou de conserver
certaines propriétés spécifiques, ce qui s’avère particulièrement utile pour la réduction d’arbres de scénarios, ainsi
que dans d’autres domaines tels que le traitement d’images. Des algorithmes exacts sont proposés pour résoudre ce
problème.

Dans [70], Kovacevic et Pichler développent un algorithme de réduction fondé sur la distance de Wasserstein im-
briquée. Comme nous le montrons dans cette thèse, cet algorithme repose sur le calcul d’un grand nombre de
barycentres de Wasserstein. La troisième contribution de cette thèse consiste à intégrer des algorithmes dédiés au
calcul des BW — notamment la méthode des projections de Bregman itérées (IBP) et la nouvelle méthode des
moyennes marginales (MAM) — dans l’algorithme proposé par [70], afin d’en améliorer les performances.

La dernière contribution de ce travail est le développement d’une methode numérique complète (software) com-
parant plusieurs modèles d’optimisation — notamment l’apprentissage par renforcement, l’optimisation robuste de
distribution et la programmation stochastique — pour la résolution d’un problème industriel de gestion de l’énergie
multi-étapes, en utilisant des données mesurées de production et de consommation d’un bâtiment d’IFPEN à So-
laize. Ces approches sont intégrées dans un logiciel unifié, regroupant l’ensemble des modules développés dans cette
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thèse, dont l’algorithme de réduction d’arbres de scénarios enrichi par des techniques de transport optimal.
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Chapter 1

Introduction

1.1 Context

The global energy landscape is transforming, driven by the imperative to reduce greenhouse gas emissions and
mitigate climate change. Central to this transition is the increasing integration of renewable energy sources, such as
wind and solar, into the electricity generation mix. While renewable energy offers significant environmental benefits,
its inherent intermittency and variability present formidable challenges for grid operators and energy management
systems.

In traditional electricity grids dominated by fossil fuels, power generation could be adjusted according to demand
fluctuations, providing a stable and predictable supply. However, the rise of renewables introduces a new dynamic,
where generation is subject to the variability of weather patterns and time-of-day fluctuations. This unpredictabil-
ity disrupts the conventional energy supply and demand balance paradigm, necessitating innovative solutions for
effective grid management.

One key strategy to address this challenge lies in enhancing flexibility on the demand side of the electricity grid. By
enabling consumers to adjust their energy consumption patterns in response to real-time conditions, demand-side
flexibility offers a powerful tool for optimizing the utilization of renewable energy resources. However, realizing this
potential requires sophisticated Energy Management Systems (EMS) capable of orchestrating complex interactions
between diverse stakeholders, energy assets, and market dynamics.

In this context, optimization-based energy management systems emerge as a promising approach to harness the
full potential of renewable energy integration. By leveraging advanced mathematical techniques, such as stochastic
optimization, these systems can intelligently allocate resources, optimize scheduling, and mitigate risks in the pres-
ence of uncertainty. Stochastic optimization techniques are well-suited to model and optimize complex, uncertain

5
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systems, making them ideally suited for addressing the inherent variability of renewable energy generation.

1.2 Models for decision making under uncertainty

In this work we are considering multistage stochastic optimization problems:

min
u1

Eξ1

[
c1(x1,u1, ξ1) + min

u2

Eξ2

[
c2(x2,u2, ξ2) + · · ·+min

uT

EξT
[cT (xT ,uT , ξT )]

]]
(1.1)

under the following constraints

xt+1 = ft(xt,ut, ξt) t = 1, . . . , T − 1 (1.2a)

(ut,xt) ∈ Kt ⊂ Rm ×Rn t = 1, . . . , T (1.2b)

x1 = x0, (1.2c)

Bold characters are used to denote random variables. We denote ut ∈ Rm the decision vector at stage t, xt ∈ Rn

the state variable, ξt ∈ Rp denotes the random vector at stage t, ct : R
n×Rm×Rp 7→ R denotes the cost function

at stage t, ft is the system dynamics and Kt is a closed convex set. From the recursive structure of the objective
function, one can deduce that an optimal decision at stage t, denoted ūt, depends on the realizations of the past
random variables denoted (ξ1, . . . , ξt) and on the statistical properties of the future random variables (ξt+1, . . . , ξT ).
Thus, an optimal solution of eq. (1.1) is said to be non-anticipative: at stage t, we have decided (u1, . . . ,ut), only
using the information available at each stage.
Solving the problem from (1.1) and (1.2) in its full generality is a complex task, and thus multiple optimization
models have been developed. The reader can refer to Shapiro et al. [111] and Pflug and Pichler [95]. The following
section provides an overview of these methods.

1.2.1 MPC for multistage stochastic optimal control problems

At each time step t, Model Predictive Control (MPC) algorithms [58, 71, 88] consist in predicting a realization of

the next K random variables denoted (ξ̂t, . . . ξ̂t+K), and solve the following deterministic optimization problem

min
ut,...,ut+K

t+K∑
s=t

cs(xs, us, ξ̂s) (1.3)

under constraints described in eq. (1.2), and keep ut as the decision.
These methods are easy to implement and rely on deterministic optimization algorithms. However, the optimization
problem from (MPC) does not use the full statistical properties of the future random variables, potentially yielding
far from sub-optimal decisions with respect to the original optimization problem from eqs. (1.1) and (1.2). MPC
methods rely on a single forecast of the uncertain variables, and thus depend heavily on the operator’s confidence
in the prediction model. However, in practice, such forecasts can significantly deviate from actual outcomes.
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1.2.2 Dynamic programming-based optimization methods

Stochastic optimization methods are often based on sequential decomposition methods, which rely on the principle
of dynamic programming [11,13,14,16]. Recently, significant work has been done on Stochastic Dual Dynamic Pro-
gramming methods [20,28,89,109,112]. These methods have the advantage of naturally computing non-anticipative
decisions and of being able to take into account a large number of uncertainties scenarios. On the other hand,
these methods require strong the assumption of stage-wise independence. In the context of energy management
problems, this assumption is not always satisfied.

1.2.3 Scenario decomposition for stochastic optimal control problems

Scenario decomposition techniques use a different paradigm for stochastic optimization problems: instead of stage
decomposition, i.e. minimizing a recursive sequence of recourse functions, scenario decomposition techniques de-
compose the problem per scenario while keeping the whole time horizon in individual (scenario-based) subproblems.
This different paradigm requires a different manner to deal with nonanticipativity, which strongly depends on the
scenarios. Therefore, scenario decomposition techniques consist in optimizing over a set of functions defined on a
discrete probability space denoted (Ω,F , P ). The function spaces on this probability space are denoted as follows

U := {u : Ω 7→ ℓ2([1, . . . , T ];R
m)} , (1.4)

X := {x : Ω 7→ ℓ∞([1, . . . , T ];Rn)} , (1.5)

Ξ :=
{
ξ : Ω 7→ ℓ2([1, . . . , T ];R

d)
}
. (1.6)

Given p ∈ [1,+∞], we denote ℓp([1, . . . , T ];R
m) the space of p-summable sequences of length T valued in Rm, and

we denote ∥.∥ℓp the corresponding p-norm. We endow the space ℓ2 with the standard inner product

⟨x, y⟩ℓ2 :=

T∑
t=1

x⊤
t yt (1.7)

We endow the space U with the following inner product

⟨x,y⟩U := EP [⟨x,y⟩ℓ2 ] (1.8)

and we denote ∥.∥U its associated norm.

1.2.3.1 Stochastic Optimization models

We now present several well-known modeling approaches solving stochastic optimization problems. The key chal-
lenge is to identify which formulation is best suited to the multistage stochastic optimization problem we will
study.

Definition 1. (Stochastic Programming model – SP) The multistage optimization problem can be formulated as

inf
u∈U

{
EP [F (u, ξ)] := EP

[
T∑

t=1

ct(xt[u],ut, ξt)

]}
(SP)
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under the following constraints

xt+1[u] = ft(xt[u],ut, ξt) P − a.s., (1.9a)

x1 = x0 P − a.s., (1.9b)

(xt[u],ut) ∈ Kt P − a.s., (1.9c)

u− EP [u|ξ] = 0 P − a.s. (1.9d)

Where x[u] is the unique solution of eqs. (1.9a) and (1.9b). The notation EP [u|ξ] is the projection, with respect to
∥.∥U, onto the subspace of functions adapted to ξ, i.e., it is the projection on the non-anticipative space. Therefore,
constraint (1.9d) ensures that the control u is non-anticipative.
For notational convenience, we define

C := {u ∈ U : (1.9) holds} . (1.10)

The stochastic programming model introduced in (SP) minimizes expected costs by anticipating among a wide range
of future scenarios. This model assumes that the probability distribution P of future data is known in advance.
Although reasonable, this assumption is not always satisfied in practice, and the true distribution sometimes has
to be estimated from limited historical data, which may affect the reliability of the results derived from it.

Definition 2. (Robust Optimization model – RO)

inf
u∈C

max
ξ∈Ξ

F (u, ξ). (RO)

Robust Optimization (RO) [55,116] discards the need for probabilities altogether. Instead, it assumes the worst-case
scenario among all the possible outcomes. This approach yields conservative solutions, which are often too costly
or overly cautious for practical use [59].

A more balanced approach, known as Distributionally Robust Optimization (DRO), considers distributions lying
within an ambiguity set P — a set of plausible probability distributions constructed from a finite collection of
scenarios. The goal is to optimize decisions to perform well against the worst-case distribution in this set.

Definition 3. (Distributionally Robust Optimization model – DRO)

inf
u∈C

sup
P∈P

EP [F (u, ξ)] (DRO)

In fact, rather than relying on a single estimated probability measure, DRO acknowledges the uncertainty in this
estimation and instead considers all distributions that lie within a certain neighborhood of the empirical measure.
The quality of the DRO solution strongly depends on how this ambiguity set is defined as it captures the trade-off
between robustness and reliance on a specific distribution.

Definition 4. (Variance Penalized Stochastic Programming model – VSP)

inf
u∈C

EP

[
[F (u, ξ)] +

α

2
∥u− EP (u)∥2ℓ2

]
(VSP)
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The recent work [80], situated within the field of risk-averse stochastic optimization, introduces a novel approach
that integrates variance penalization directly into multistage SP models. By accounting for cost variability across
scenarios, the approach effectively balances robustness and performance.

Another approach is the deterministic-control approach to stochastic programming (DSP) model. It involves com-
puting a single control policy that minimizes the expected cost across all scenarios.

Definition 5. (Desterministic-Control Approach for SP – DSP)

inf
u∈ℓ2([1,...,T ];Rn)

EP [F (u, ξ)] so that eqs. (1.9a) to (1.9c) hold (DSP)

Note that the control u here does not depends on ξ.
(DSP) fits a standard setting of constrained optimal control problem and can be solved easily even when using a
large number of scenarios. This method is highly robust but can be sub-optimal. Also note that this model can
have no solution because it is possible that there exists no deterministic control that can respect the constraints for
all scenarios.

A key challenge shared by most of the optimization models discussed so far is their reliance on scenario genera-
tion. While increasing the number of scenarios generally improves solution accuracy, it also significantly increases
computational complexity. To enable a fair and rigorous comparison between models (against DSP for which the
number of scenarios is not an issue), it is essential that each problem be solved efficiently by suitable methods under
their best performance conditions. One of the contributions of this work is to maintain tractability of stochastic
optimization models while leveraging a large number of scenarios.

1.3 Scenario reduction for multistage stochastic optimization problem

1.3.1 From scenario decomposition to scenario trees

At each time step t, the random variables ξ[t] := (ξ1, . . . , ξt) generate a Ãt partition of Ω defined as

Ãt := {A ⊆ Ω : ∀ω1, ω2 ∈ A,∀s ≤ t, ξs(ω1) = ξs(ω2)} . (1.11)

The elements of the partition Ãt are called t-atoms and we denote Ft the smallest σ-algebra generated by the
t-atoms, and the sequence (Ft)t is the filtration generated by the random variables ξ[t]. Finally the sequence of
t-partition can be represented as a scenario tree, where each node of depth t corresponds to a t-atom as illustrated on
Figure 1.1. The non-anticipative constraint (1.9d) ensures that the optimal solution u yields the same t-partition of
Ω as ξ and thus yields the same filtration (Ft)t. Now, using this t-partition computing the conditional expectation
u := E[û|ξ] is straightforward and we have

∀A ∈ Ãt,∀ω ∈ A,u[t](ω) :=
1

P (A)

∑
ω′∈A

P ({ω′}) û[t](ω
′). (1.12)

9
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Figure 1.1: Let Ω = {ω1, . . . , ω4}. At stage t = 1, all scenarios have the same value, i.e., ξ1(ωi) = ξ1(ωj), for all
i, j. At stage t = 2, scenarios {ω1, ω2, ω3} are still identical whereas ξ2(ω4) ̸= ξ2({ω1, ω2, ω3}). Finally, at stage
t = 3, all scenarios are different, ξ3(ωi) ̸= ξ3(ωj), for all i ̸= j.

1.3.2 The scenario tree reduction problem

As illustrated in Section 1.3.1, the random variables and the available information at stages t = 1, . . . , T in a
stochastic optimization problem with finitely many scenarios can be represented as a scenario tree. The complexity
of the multistage stochastic optimization problem increases with the number of scenarios. Therefore the necessity
of finding an equilibrium between the representation of uncertainties and numerical tractability is strongly linked to
the concept of scenario tree reduction. This concept was introduced by Dupačová et al. [52] in 2003. The main idea
is to start from a large scenario tree that accurately represents the underlying stochastic process, and to construct
a smaller tree that preserves as much of the original information as possible. A fundamental question that arises is
how to formally quantify the information preservation.

When reducing scenario trees, the choice of a distance to minimize between trees is of primary importance. There
exist distances, and thus methods, that ignore the accumulation of information over time on which rely the non-
anticipativity of stochastic problems.

Notably, one of the most commonly used scenario reduction algorithms is the approach proposed by Heitsch and
Römisch [65], which measures distances between nodes with the same parent, ultimately reducing pairs of nodes
until a stopping criterion is met. The work [128] developed algorithms that employ K-means clustering and Linear
Programming (LP) moment-matching methods to approximate multistage scenario trees. In [67] comparative
analysis of several clustering algorithms are conducted, and highlight that the general behaviour of these algorithms
concerning the closeness to the exact solution of the stochastic problem is still volatile.
Wasserstein distance-based methods aim to minimize probabilistic distances, akin to the Wasserstein distance
[105, 122], between the original complex tree and a simpler smaller tree whose solution computation will be more
tractable; see for instance [46,52]. Li and Floudas [74] treat scenario reduction as a mixed-integer linear programming
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(MILP) problem, and aim at reducing the Wasserstein distance between scenarios. Subsequent works [69, 75]
improved other LP-based scenario reduction strategies, the latter solved the entropy-regularized optimal transport
using the Sinkhorn–Knopp algorithm [115].

The Wasserstein distance approach is a natural choice when tackling probability distributions but does not capture
the structural information of multistage scenario trees. Neglecting the tree filtration potentially leads to deviations
in solutions, because the solution of a stochastic optimization problem is non-anticipative. This is why it is of great
importance to use a reduction method that takes into account the tree structure, i.e. the filtration. Indeed, the
authors of [66] studied the stability of multistage stochastic programs and showed that multistage scenario tree
reductions should be based on a distance that accounts for filtration in order to obtain a bound on the stability of
the solution.

The introduction of the nested distance [96, 97], also called process distance, offered a valuable framework for
stochastic programs. This new way of computing a distance between trees that takes into account the filtration, is
now broadly used to compare trees and assess the accuracy of reduction methods. Leveraging the nested distance
to guide the process approximation enables control over both the statistical quality of the approximation and its
impact on the objective in multistage stochastic optimization problems pertaining to the respective stochastic pro-
cess [66,70]. Kovacevic and Pichler [70] introduced an algorithm that directly targets the minimization of the nested
distance in the reduction tree process, although this approach is proved complex and computationally expensive.
Indeed while it is easy to calculate the process distance between given trees by solving one LP, finding a tree to
minimize the process distance (i.e. reducing a tree) is much more difficult. Both probabilities and values of the
approximating tree have to be chosen, such that the process distance is minimized. This leads to a large, nonconvex
optimization problem, which can be solved in reasonable time only for small instances due to the computation of
multiple potentially large-scale LPs.

Based on the Kovacevic and Pichler’s work [70], we introduce a novel approach for reducing general scenario trees.
We noticed that the minimization of the nested distance between two trees, as employed in the Kovacevic and
Pichler’s method, makes naturally appear the Wasserstein barycenter problem. We propose to leverage this optimal
transport problem and employ efficient algorithms to attractively enhance the Kovacevic and Pichler’s reduction
method.

In this context, we developed the Method of Averaged Marginals (MAM) [85] as a novel and efficient method
for computing Wasserstein barycenters. Unlike iterative projection-based methods, such as the Iterative Bregman
Projection algorithm (IBP) [15] — a widely used state-of-the-art approach — MAM is grounded in a marginal-based
formulation that enables direct optimization without entropic regularization. We provide a detailed convergence
analysis of the method, propose accelerated variants, and demonstrate its practical relevance through extensive
numerical experiments on real-world data.

1.4 The Energy Management System battery strategy at IFPEN

This work takes its motivations in the energy managing challenges raised by the increasing integration of renewable
energy sources into the power grid.
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An Energy Management System (EMS) is a software system — sometimes coupled with physical controllers —
designed to optimize energy usage within a building, industrial site, power network, or microgrid. Its purpose is to
monitor and control energy flows in order to reduce operational costs, improve efficiency, and support integration of
local renewable sources and storage devices. Depending on the application, the EMS may act on various time scales
(real-time, hourly, daily) and control various components (batteries, loads, production units) through automatic
strategies.

In our setting, the EMS is in charge of the automatic control of a stationary battery connected downstream of a
prosumer’s electricity meter. A prosumer is an end-user which both consumes and produces electricity, typically
via intermittent sources such as photovoltaic panels, as depicted Figure 1.2. The goal is to minimize the expected
electricity cost over a finite time horizon, while accounting for battery dynamics and the stochastic nature of both
consumption and production.

Figure 1.2: Schematic diagram of a domestic system with a stationary battery controlled by an EMS [80]

However, managing energy efficiently requires making sequential decisions under uncertainty: the future is not fully
known when decisions must be made. In this context, the methods developed in this thesis aim to address this
challenge by computing robust models, which naturally involve large scenario trees—hence the need for scenario
tree reduction techniques.

1.5 Contributions and outline

This thesis presents both methodological and applied contributions in the field of energy management optimization
under uncertainty. All proposed methods are applied and benchmarked on a real EMS deployed at IFPEN. Our
main contributions can be summarized as follows:

Chapter 2 addresses the core optimization problem underlying the scenario tree reduction process. We first review
key concepts from optimal transport theory, including the Wasserstein distance and its role in averaging probability
distributions. We then introduce
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• a new algorithm for the Wasserstein barycenter problem (WB). We develop a novel optimization
algorithm for solving the Wasserstein barycenter (WB) problem exactly: the Method of Averaged Marginals
(MAM).

– The algorithm is based on the Douglas–Rachford operator splitting scheme. We show that each step of
the splitting procedure is computationally tractable;

– we provide mathematical guarantees of exact convergence based on the Douglas-Rachford theory in the
deterministic and randomized version of the algorithm;

– we benchmark MAM against state-of-the-art methods such as Iterative Bregman Projections (IBP) [15]
and show the strenght of MAM;

– we introduce a new model for the unbalanced Wasserstein barycenter problem and demonstrate its
practical applications through numerical experiments;

– we develop mathematical garantee for MAM from fixed-support to free-support settings.

The main content of Chapter 2 appears in the paper: Mimouni, Malisani, Zhu, de Oliveira, (2024) Com-
puting Wasserstein barycenters via operator splitting: The method of averaged marginals. SIAM Journal on
Mathematics of Data Science, 6(4), 1000-1026 [85].

Chapter 3 extends the classical barycenter problem by incorporating convex and nonconvex constraints on the
solution. These constrained formulations are motivated by real-world applications such as scenario tree reduction,
where the barycenter can be requested to satisfy structural or physical constraints. We propose

• a new model and approach for computing constrained WBs.

– We propose several extensions of the WB formulation incorporating convex and nonconvex constraints
on the barycenter. These constraints are particularly relevant in the context of tree reduction and other
industrial use cases;

– we show that a slight modification of MAM solves the problem exactly in the case of convex constraints;

– we propose an easy-to-implement heuristic for solving the problem with nonconvex constraints, and we
motivate its use through examples in which it performs well;

– we propose a general exact method to solve the problem if the constraints are nonconvex.

The main content of Chapter 3 will appear in the paper: Mimouni, de Oliveira, Sempere, (2025). On the
Computation of Constrained Wasserstein Barycenters. Pacific Journal of Optimization for a special issue
dedicated to Professor R. Tyrrell Rockafellar [84].

Chapter 4 presents our methodology for scenario tree reduction. After introducing the notion of nested distance
between stochastic processes, we detail how the reduction task can be reformulated as a sequence of Wasserstein
barycenter problems. We describe the algorithmic implementation of our approach and compare the original method
of Kovacevic and Pichler with the enhanced versions proposed in this work through extensive numerical experiments.
We propose

• a boosted scenario tree reduction methodology. Increasing the number of scenarios improves model
fidelity but leads to significant computational burden. To tackle this, we:
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– build on the work of Kovacevic and Pichler [70], which involves minimizing the nested distance between
scenario trees;

– demonstrate that this approach naturally leads to solving a sequence of Wasserstein barycenter problems;

– enhance their method using modern optimal transport algorithms, including IBP and our newly proposed
MAM;

– achieve up to a 9-fold improvement in CPU time for large trees, based on our numerical experiments.

These results offer a practical and scalable tree reduction strategy for complex stochastic systems. The main
content of Chapter 4 have been submitted for possible publication in: Mimouni, Malisani, Zhu, de Oliveira,
(2025) Scenario Tree Reduction via Wasserstein Barycenters. Annals of Operations Research [86].

Chapter 5 turns to the EMS control application at IFPEN. We compare multiple decision-making models. This
chapter provides practical insights into the trade-offs between model complexity, robustness, and computational
efficiency, and includes a complete implementation pipeline adapted to IFPEN’s industrial system. We conduct

• a comprehensive comparison of decision-making models. This includes MPC, (risk-free and risk-
averse) stochastic programming models, robust optimization, distributionally robust models, and reinforce-
ment learning. We highlight that:

– scenario-based models can be effectively deployed thanks to scenario reduction techniques that preserve
as much of the original information as possible;

– each model is evaluated in terms of robustness, computational tractability, and out-of-sample performance
on real data from the IFPEN battery;

– we develop a complete end-to-end software pipeline tailored to IFPEN’s system architecture, integrating
scenario generation, tree reduction, optimization, and automatic control execution.

The main content of Chapter 5 will be submitted to a reputable journal in the field of EMS [87].
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Chapter 2

The Wasserstein barycenter problem

This chapter addresses the core optimization problem underlying the scenario tree reduction process.

Abstract The Wasserstein barycenter (WB) is an important tool for summarizing sets of probability measures. It
finds applications in applied probability, clustering, image processing, etc. When the measures’ supports are finite,
computing a (balanced) WB can be done by solving a linear optimization problem whose dimensions generally
exceed standard solvers’ capabilities. In the more general setting where measures have different total masses, we
propose a convex nonsmooth optimization formulation for the so-called unbalanced WB problem. Due to their
colossal dimensions, we introduce a decomposition scheme based on the Douglas-Rachford splitting method that
can be applied to both balanced and unbalanced WB problem variants. Our algorithm, which has the interesting
interpretation of being built upon averaging marginals, operates a series of simple (and exact) projections that can
be parallelized and even randomized, making it suitable for large-scale datasets. Numerical comparisons against
state-of-the-art methods on several data sets from the literature illustrate the method’s performance.

The main content of this chapter has appeared in [85]: Mimouni, Malisani, Zhu, de Oliveira, (2024) Computing
Wasserstein barycenters via operator splitting: The method of averaged marginals. SIAM Journal on Mathematics
of Data Science, 6(4), 1000-1026.

2.1 Introduction

In applied probability, stochastic optimization, and data science, a crucial aspect is the ability to compare, sum-
marize, and reduce the dimensionality of empirical/discrete measures. Since these tasks rely heavily on pairwise
comparisons of measures, it is essential to use an appropriate metric for accurate data analysis. Different metrics
define different barycenters of a set of measures: a barycenter is a mean element that minimizes the (weighted)
sum of all its square distances to the set of target measures. When the chosen metric is the optimal transport one,
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and there is mass equality between the measures, the underlying barycenter is denoted by (balanced) Wasserstein
Barycenter (WB).

The optimal transport metric defines the so-called Wasserstein distance (also known as Mallows or Earth Mover’s
distance), a popular choice in statistics, machine learning, and stochastic optimization [47,93,95]. The Wasserstein
distance has several valuable theoretical and practical properties [105,122] that are transferred to WBs [1,38,93,99].
Indeed, thanks to the Wasserstein distance, one key advantage of WBs is their ability to preserve the underlying
geometry of the data, even in high-dimensional spaces. This fact makes WBs particularly useful in image processing,
where datasets often contain many pixels and complex features that must be accurately represented and analyzed
[113,118].

Being defined by the Wasserstein distance, WBs are challenging to compute. The Wasserstein distance is compu-
tationally expensive because, to compute an optimal transport plan, one needs to cope with a large linear program
(LP) problem that has no analytical solution and cubic worst-case complexity1 [131]. The situation becomes even
worse for computing a WB of a set of finitely many discrete measures as the problem involves several transport
plans [1]. This problem can be written as LP [6, 27], whose size becomes astronomical as it scales exponentially
in the number of measures, exceeding thus the capabilities of standard LP solvers even for a small number of
measures [6,23,27]. For this reason, significant effort has been made to reduce the LP’s size and design specialized
solvers [2,6,22,27]. In particular, the work [22] proposes reduced LP models that exploit data structure. Although
significantly smaller than the original LP problem defining WBs, those models are in general large scale and still
hard to solve. The work [2] leverages techniques from computational geometry and combinatorial optimization to
propose a specialized LP solver for computing WBs. The approach, which works on the dual problem and imple-
ments a separation oracle, is not efficient beyond moderate-scale inputs [2, § 5]. Indeed, a WB cannot be computed
in time polynomial in the number of measures, (maximum) support size, and dimension [3].

Given the difficulty of computing exact (free-support) WBs, much research has focused on inexact approaches.
A vast body of literature focuses on computing inexact WBs, either by employing approximate LP approaches
as in [21, 99, 123], or by restricting the support of the WB to a fixed set, the so-called fixed-support approaches
[38,93,131]. These techniques often employ a block-coordinate scheme consisting of two steps, first fixing the support
and optimizing over the masses, then fixing the masses and optimizing over the support (of a given size). The first
of these steps is an LP problem with the same structure as the exact (free-support) WB’s LP formulation discussed
above. The only difference is the LP’s size, as fixing the support reduces the problem significantly. The second
step in the block-coordinate scheme has a straightforward solution, provided the quadratic Wasserstein distance is
employed.

Hence, whether an exact or inexact approach is employed to compute (approximate) a WB, one invariably has to
face a large-scale LP of the form (see equations (2.9) and (2.10) for details)

min
π∈B

M∑
m=1

⟨c(m), π(m)⟩ s.t. π(m) ∈ Π(m), m = 1, . . . ,M, (2.1)

where M stands for the number of discrete measures, c for the transportation costs, Π(m) represents a polytope
containing measures with given marginal, and B symbolizes a linear subspace. While exact techniques usually
build upon linear programming techniques, inexact approaches tackle (2.1) via reformulations based on an entropic
regularization [15, 38, 40, 60, 93, 131]. Indeed, the work [38] proposes to compute a WB inexactly by decomposing

1More precisely, O(S3log(S)), with S the size of the input data.
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(2.1) along the measures and then regularizing the resulting optimal transportation problems with an entropy-
like function. A projected subgradient method gives rise to a minimization scheme with decomposition to deal
with the high dimensions of the LP. The regularization technique allows one to employ the celebrated Sinkhorn
algorithm [37,114], which has a simple closed-form expression and can be implemented efficiently using only matrix
operations. Furthermore, this technique opened the way to the Iterative Bregman Projection (IBP) method proposed
in [15]. IBP is highly memory efficient for distributions with a shared support set and is considered to be one of
the most effective methods to tackle fixed-support WB problems. However, as IBP works with an approximating
model and fixed support, the method falls in the class of inexact approaches.

Another approach fitting into the category of inexact methods has been recently proposed in [131], which uses
the same type of regularization as IBP but decomposes the problem into a sequence of smaller subproblems with
straightforward solutions. More specifically, the approach in [131] is a modification (tailored to the WB problem)
of the Bregman Alternating Direction Method of Multipliers (B-ADMM) of [124]. The modified B-ADMM has been
shown to compute promising results for sparse support measures and therefore is well-suited in some clustering
applications. However, the theoretical convergence properties of the modified B-ADMM algorithm are not well
understood and the approach should be considered as a heuristic. In the same vein, the work [130] proposes to
address the WB problem via the standard ADMM algorithm, which decomposes the problem into smaller and
simpler subproblems. As mentioned by the authors in their subsequent paper [131], the numerical efficiency of the
standard ADMM is still inadequate for large datasets.

To cope with the challenge of solving LPs of the form (2.1) resulting from computing exact (free-support) or
inexact (fixed-support) WBs, we propose a new algorithm based on the celebrated Douglas-Rachford splitting
operator method (DR) [50, 53, 56]. Our proposal, which exploits the problem structure for decomposition, is
denoted by Method of Averaged Marginals (MAM) as at every iteration, the algorithm computes a barycenter
approximation by averaging marginals issued by transportation plans that are updated independently, in parallel,
and even randomly if necessary. Accordingly, the algorithm operates a series of simple and exact projections that
can be carried out in parallel and even randomly. These compelling features allow for considering data sets beyond
moderate sizes in the free-support setting and attaining more accurate results than entropy-based methods usually
get in the fixed-support case. Furthermore, MAM can be applied to a more general setting where measures have
different total masses.

All the methods mentioned in the above references deal exclusively with sets of probability measures because WBs
are limited to measures with equal total masses. A tentative way to circumvent this limitation is to normalize
general positive measures to compute a standard (balanced) WB. However, such a naive strategy is generally
unsatisfactory and limits the use of WBs in many real-life applications such as logistics, medical imaging, and others
coming from the field of biology [63, 107]. Consequently, the concept of WB has been generalized to summarize
such more general measures. Different generalizations of the WB exist in the literature, and they are based on
variants of unbalanced optimal transport problems that define a distance between general non-negative, finitely
supported measures by allowing for mass creation and destruction [63]. Essentially, such generalizations, known as
unbalanced Wasserstein barycenters (UWBs), depend on how one chooses to relax the marginal constraints. In the
review paper [107] and references therein, marginal constraints are moved to the objective function with the help
of divergence functions. Differently, in [63] the authors replace the marginal constraints with sub-couplings and
penalize their discrepancies. It is worth mentioning that UWB is more than simply copying with global variation in
the measures’ total masses. Generalized barycenters tend to be more robust to local mass variations, which include
outliers and missing parts [107].
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For the sake of a unified algorithmic proposal for both balanced and unbalanced WBs, in this work, we consider
a different formulation for dealing with sets of measures with different total masses. Instead of relaxing both
marginal constraints in each one of the M transportation plans as done in [63, 107] and references therein, our
formulation generalizes the balanced WB by relaxing the constraint that the barycenter is a marginal measure of
all underlying transportation plans. More specifically, by using the distance function to the subspace B, that is
distB(π) := minθ∈B ∥θ − π∥, and a penalty parameter γ > 0, we propose the following nonlinear optimization
problem yielding a UWB:

min
π

M∑
m=1

⟨c(m), π(m)⟩+ γdistB(π) s.t. π(m) ∈ Π(m), m = 1, . . . ,M. (2.2)

While our approach can be seen as an abridged alternative to the thorough methodologies of [63] and [107], its
favorable structure for efficient splitting techniques combined with the good quality of the issued UWBs confirms
the formulation’s practical interest.

Thanks to our unified analysis, MAM can be applied to both balanced and unbalanced WB problems without
any change: all that is needed is to set up the parameter γ > 0 in (2.2). To the best of our knowledge, MAM
is the first approach capable of handling balanced and unbalanced WB problems in a single algorithm, which
can be further run in a deterministic or randomized fashion. In addition to its versatility, MAM copes with
scalability issues arising from barycenter problems, is memory efficient, and has convergence guarantees. As further
contributions, we conduct experiments on several data sets from the literature to demonstrate the computational
efficiency and accuracy of the new algorithm and make our Python codes publicly available at the link (https:
//github.com/dan-mim/Computing-Wasserstein-Barycenters-MAM) [81].

The remainder of this work is organized as follows. Section 2.2 introduces the notation and recalls the formulation
of balanced WB problems. The proposed formulation for unbalanced WBs is presented in Section 2.3. Section 2.4
briefly recalls the Douglas-Rachford splitting (DR) method and its convergence properties both in the deterministic
and randomized settings. The main contribution of this work, the Method of Averaged Marginals, is presented
in Section 2.5. Convergence analysis is given in the same section by relying on the DR algorithm’s properties.
Section 2.6 illustrates the numerical performance of the deterministic and randomized variants of MAM on several
data sets from the literature. Numerical comparisons with the free-support method [2] and fixed-support approaches
in [15] and [131] are presented for the balanced case. Then, some applications of the UWB are considered.

2.2 Background on optimal transport and Wasserstein barycenters

Throughout this work, for τ ≥ 0 a given scalar, the notation ∆R(τ) denotes the set of vectors in RR
+ adding up to

τ , that is,

∆R(τ) :=

{
u ∈ RR

+ :

R∑
i=1

ui = τ

}
. (2.3)

If τ = 1, then ∆R(1), denoted simply by ∆R, is the R + 1 simplex. Let P(Rd) be the set of Borel probability
measures on Rd. Furthermore, let ξ and ζ be two random vectors having probability measures µ and ν in P(Rd),
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that is, ξ ∼ µ and ζ ∼ ν. Their (quadratic) 2-Wasserstein distance is given by:

W2(µ, ν) :=

(
inf

π∈U(µ,ν)

∫
Rd×Rd

∥ξ − ζ∥2dπ(ξ, ζ)
)1/2

, (WD)

where U(µ, ν) is the set of all probability measures on Rd ×Rd having marginals µ and ν. We denote by W 2
2 (µ, ν)

the squared Wassserstein distance, i.e., W 2
2 (µ, ν) := (W2(µ, ν))

2.

Definition 6 (Wasserstein Barycenter - WB). Given M measures {ν(1), . . . , ν(M)} in P(Rd) and α ∈ ∆M , a
Wasserstein barycenter with weights α is a solution to the following optimization problem

min
µ∈P(Rd)

M∑
m=1

αmW 2
2 (µ, ν

(m)) . (2.4)

Informally, a WB µ is a measure such that the total cost for transporting from µ to all ν(m) is minimal concerning
the quadratic Wasserstein distance. A WB µ exists in generality and, if one of the ν(m) vanishes on all Borel subsets
of Hausdorff dimension d− 1, then it is also unique [1]. In this work, we are given M empirical (discrete) measures
ν(m) having finite support sets:

supp(ν(m)) :=
{
ζ
(m)
1 , . . . , ζ

(m)

S(m)

}
and ν(m) =

S(m)∑
s=1

q(m)
s δζ(m) , (2.5)

with δu the Dirac unit mass on u ∈ Rd and q(m) ∈ ∆S(m) , m = 1, . . . ,M . In this case, the uniqueness of WB is no
longer ensured in general but the following results hold [6].

Theorem 1 (From [6]). Consider M empirical measures ν(m) as in (2.5). Then, problem (2.4) has at least one
solution.

a) Every solution µ satisfies

supp(µ) ⊂ Ξ :=

{
M∑

m=1

αmζ(m)
s : ζ(m)

s ∈ supp(ν(m)), m = 1, . . . ,M

}
. (2.6)

b) There exists a sparse solution µ̄ such that

|supp(µ̄)| ≤ T −M + 1, where T :=

M∑
m=1

S(m) (2.7)

c) If ν(m), m = 1, . . . ,M , are supported on the same grid K1 × · · · × Kd-grid in Rd, and αm = 1
M for all m,

then there exits a solution µ to (2.4) supported on (M(K1 − 1) + 1)× · · · × (M(Kd − 1) + 1)-grid, uniform in
all directions.

Proof. Item a) is Proposition 1 (iii) in [6], Items b) and c) are Theorem 2 and Corollary 1 in the same paper.
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Let R := |Ξ| be the number of points ξ in the finite set Ξ. It follows from item a) that any solution µ to problem (2.4)
defined with discrete measures has the form

µ =

R∑
r=1

prδξr , with p ∈ ∆R.

By letting PΞ(R
d) :=

{
µ ∈ P(Rd) : supp(µ) ⊂ Ξ

}
, problem (2.4) can be reformulated as a finite-dimensional LP

by replacing the constraint µ ∈ P(Rd) with µ ∈ PΞ(R
d). Indeed, by considering all the R points in Ξ, problem (2.4)

boils down to 
min

p∈∆R, π≥0

M∑
m=1

αm

R∑
r=1

S(m)∑
s=1

∥ξr − ζ(m)
s ∥2π(m)

rs

s.t.
∑R

r=1 π
(m)
rs = q

(m)
s , s = 1, . . . , S(m), m = 1, . . . ,M∑S(m)

s=1 π
(m)
rs = pr, r = 1, . . . , R, m = 1, . . . ,M.

(2.8)

Such LP scales exponentially in the number of measures. To see that, assume that all measures have support of same
cardinality S, i.e., S(m) = S for all m = 1, . . . ,M : then R = SM and the LP has MRS + R = M(S)M+1 + (S)M

variables and M(R + S) = M(S)M + MS equality constraints. When the measures are supported on the same
discrete grid in Rd and αm = 1

M for all m, the number of different points in Ξ reduces drastically: in this case,
S = Kd and R = ((K − 1)M + 1)d from item c) above, which is significantly smaller than SM = KdM in the
previous general setting (however still colossal in real-life applications) [22, 23]. These observations shed light on
how the number of measures, the sizes of their support sets, and dimension d impact the size of problem (2.8).
The paper [23] investigates the complexity of computing a sparse Wasserstein barycenter, and [3] shows that a WB
cannot be computed in time polynomial in the number of measures, (maximum) support size, and dimension d.

Item b) ensures that a sparse solution exists with a support size of at most M(S − 1) + 1, motivating thus the
so-called fixed-support approaches that generally employ a block-coordinate optimization heuristic: at iteration k,
a support Ξk of size R (say R ≤M(S − 1) + 1) is fixed and the LP (2.8) (with ξr ∈ Ξk) is solved to get an optimal

plan πk, which is in turn fixed in the optimization problem minξ
∑M

m=1 αm

∑R
r=1

∑S(m)

s=1 ∥ξr−ζ
(m)
s ∥2πk,(m)

rs yielding
a new fixed support Ξk+1. Observe that this last problem has a straightforward solution (see for instance [38, Alg.
2] and [131, § II]). Otherwise, when the free-support approach is taken, computing a WB amounts to solve (2.8)
by considering all points ξ ∈ Ξ, thus yielding an LP of astronomical size. Hence, whether an exact (free-support)
or inexact (fixed-support) approach is employed to compute (approximate) a WB, one invariably has to face a
large-scale LP of the form (2.8), which fits into the structure of (2.1) by dropping the decision variable2 p, setting

Π(m) :=

{
π(m) ≥ 0 :

R∑
r=1

π(m)
rs = q(m)

s , s = 1, . . . , S(m)

}
, m = 1, . . . ,M, (2.9)

and the linear subspace

B :=

π = (π(1), . . . , π(M))

∣∣∣∣∣∣∣∣∣∣

∑S(1)

s=1 π
(1)
rs =

∑S(2)

s=1 π
(2)
rs , r = 1, . . . , R∑S(2)

s=1 π
(2)
rs =

∑S(3)

s=1 π
(3)
rs , r = 1, . . . , R

...∑S(M−1)

s=1 π
(M−1)
rs =

∑S(M)

s=1 π
(M)
rs , r = 1, . . . , R

 . (2.10)

2Although variable p is the one of interest, it can be removed from (2.8) and easily recovered thanks to the balanced subspace (2.10).
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The polytope Π(m) is composed of transportation plans π(m) with right marginals q(m). The set with all left
marginals is characterized by the linear subspace B of “balanced plans”.

In light of the above observations, we focus on a decomposition technique for solving LPs of the form (2.1) to render
computing a (free or fixed support) WB possible beyond moderate-scale data inputs. We mention in passing that
no assumption on the costs of (2.1) is required. This fact opens the way to consider, for instance, W ι

ι Wasserstein
distances with ι ∈ [1,∞).

2.3 Discrete unbalanced Wasserstein barycenters

A well-known drawback of formulation (2.4) is its limitation to measures with equal total masses, so the feasible set
defining the Wasserstein distance (WD) is nonempty. To overcome this limitation, an idea is to relax the marginal
constraints in (WD) to cope with “unbalanced” measures, i.e., with different masses [107]. Different manners to relax
these marginal constraints yield different generalizations of the concept of Wasserstein barycenter, known in the
literature by the name of unbalanced Wasserstein barycenters (UWBs). In this work, we propose a new formulation
that uses a metric to measure the distance of a multi-plan π = (π(1), . . . , π(M)) to the balanced subspace B defined
in eq. (2.10). In the following we take such a metric as being the Euclidean distance distB(π) = minθ∈B ∥θ − π∥
and define the following nonlinear optimization problem, with γ > 0 a penalty parameter, Π(m) given in (2.9), and
B in (2.10): 

min
π

M∑
m=1

αm

R∑
r=1

S(m)∑
s=1

∥ξr − ζ(m)
s ∥2π(m)

rs + γdistB(π)

s.t. π(m) ∈ Π(m), m = 1, . . . ,M.

(2.11)

This problem has always a solution because the objective function is continuous and the non-empty feasible set is
compact. Note that in the balanced case, problem eq. (2.11) is a relaxation of eq. (2.1). In the unbalanced setting,
any feasible point to eq. (2.11) yields distB(π) > 0. As this distance function is strictly convex outside B, the
above problem has a unique solution.

Definition 7 (Discrete Unbalanced Wassertein Barycenter - UWB). Given a set {ν(1), . . . , ν(M)} of unbalanced
non-negative vectors, let π̄ ≥ 0 be the unique solution to problem (2.11), and π̃ the projection of π̄ onto the balanced

subspace B, that is, π̃ := ProjB(π̄). The measure µ =
∑R

r=1 prδξr with pr :=
∑S(m)

s=1 π̃
(m)
rs ,r = 1, . . . , R for any

m ∈ {1, . . . ,M}, is defined as the γ-unbalanced Wasserstein barycenter of {ν(1), . . . , ν(M)}.

The above definition differs from the ones found in the literature, which relaxes the constraints
∑R

r=1 π
(m)
rs = q

(m)
s ,

see for instance [63, 107]. Although the above definition is not as general as the ones of the latter references, it
provides meaningful results (see Section 2.6.4 below), uniqueness of the barycenter (if unbalanced), and is indeed
an extension of (balanced) WB as the LP (2.8) is for (2.1) what the nonlinear problem (2.11) is for (2.2).

Proposition 1. Suppose that {ν(1), . . . , ν(M)} are probability measures and let γ > ∥c∥ in problem eq. (2.2). Then
π̄ solves (2.2) if and only if π̄ solves (2.1). In particular, any UWB according to definition 7 is also a (balanced)
WB.

Proof. Being a linear function, the objective of (2.1) is Lipschitz continuous with constant ∥c∥. Thus, the standard
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theory of exact penalty methods in optimization (see for instance [17, Prop. 1.5.2]) ensures that, when γ > ∥c∥,
π̄ solves problem eq. (2.2) if and only if π̄ solves eq. (2.1). In particular, for Π(m) and B given in (2.9) and

(2.10), respectively, π̄ = ProjB(π̄) and the measure µ =
∑R

r=1 prδξr with pr =
∑S(m)

s=1 π̄
(m)
rs (as in definition 7)

solves (2.8).

Another advantage of definition 7 is that the problem yielding the proposed UBW enjoys a favorable structure that
can be efficiently exploited by splitting methods. Indeed, it turns out that computing a balanced or unbalanced
WB can be done by the algorithm presented in Section 2.5.3. In the next section, we show that the computational
burden to solve either the LP eq. (2.1) or the nonlinear problem eq. (2.2) by the Douglas-Rachford splitting method
is the same.

2.4 Problem reformulation and the Douglas-Rachford algorithm

We have recalled that computing a free or fixed-support (balanced) WB requires solving one or more LPs of the
form (2.1), with Π(m) and B given in (2.9) and (2.10), respectively. Furthermore, according to our new Definition 7,
computing a UWB requires solving one (or more) nonlinear problems of the form (2.2). In this section, we focus
on problems eq. (2.1) and eq. (2.2) and reformulate them in a suitable way so that the Douglas-Rachford splitting
operator method can be easily deployed to compute a discrete barycenter in the balanced and unbalanced settings.
To this end, let us consider the indicator function iC of a convex set C (that is iC(x) = 0 if x ∈ C and iC(x) =∞
otherwise) to define the convex functions

f (m)(π(m)) :=

R∑
r=1

S(m)∑
s=1

c(m)
rs π(m)

rs + iΠ(m)(π(m)), m = 1, . . . ,M, (2.12)

and recast problems eq. (2.1) and eq. (2.2) in the following more general setting

min
π

f(π) + g(π) , with : (2.13a)

f(π) :=

M∑
m=1

f (m)(π(m)) and g(π) :=

{
iB(π) if balanced
γ distB(π) if unbalanced.

(2.13b)

Since f is polyhedral, Dom(f) ∩ ri(Dom(g)) ̸= ∅, and (2.13) is solvable3, it follows from [8, Thm 27.2] that
computing one of its solutions is equivalent to

find π such that 0 ∈ ∂f(π) + ∂g(π). (2.14)

Recall that the subdifferential of a proper convex lower semicontinuous functions is a maximal monotone operator
[8, Thm 20.40]. Thus, the above generalized equation is nothing but the problem of finding a zero of the sum of
two maximal monotone operators, a well-understood problem for which several methods exist (see, for instance,
Chapters 25 and 27 of the textbook [8]). Among the existing algorithms, the Douglas-Rachford operator splitting
method [50] (see also [8, § 25.2 and § 27.2 ]) is the most popular one. When applied to problem eq. (2.14), the

3ri denotes the relative interior of a set.
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DR algorithm asymptotically computes a solution by repeating the following steps, with k = 0, 1, . . ., given initial
point θ0 = (θ(1),0, . . . , θ(M),0) and prox-parameter ρ > 0:

πk+1 = argmin
π

g(π) +
ρ

2
∥π − θk∥2

π̂k+1 = argmin
π

f(π) +
ρ

2
∥π − (2πk+1 − θk)∥2

θk+1 = θk + π̂k+1 − πk+1.

(2.15)

By noting that f and g in eq. (2.13b) are proper convex lower semicontinuous functions and problem eq. (2.13) is
solvable (so is (2.14) [8, Thm 27.2(ii)]), the following is a direct consequence of Theorem 25.6 and Corollary 27.4
of [8].

Theorem 2. The sequence {θk} produced by the DR algorithm eq. (2.15) converges to a point θ̄, and the following
holds: π̄ := argminπ g(π) + ρ

2∥π − θ̄∥2 solves eq. (2.13), and {πk} and {π̂k} converge to π̄.

The DR algorithm is attractive when the two first steps in eq. (2.15) are convenient to execute, which is the case in
our settings. As we will shortly see, the iterate πk+1 above has an explicit formula in both balanced and unbalanced
cases, and computing π̂k+1 amounts to executing a series of independent projections onto the simplex. This task
can be accomplished exactly and efficiently by specialized algorithms.

Since f in eq. (2.13b) has a separable structure, the computation of π̂k+1 in eq. (2.15) breaks down to a series of
smaller and simpler subproblems as just mentioned. Hence, we may exploit such a structure by combining recent
developments in DR’s literature to produce the following randomized version of the DR algorithm eq. (2.15), with
α the vector of weights in eq. (2.4):

πk+1 = argmin
π

g(π) +
ρ

2
∥π − θk∥2

Draw randomly m ∈ {1, 2, . . . ,M} with probability αm > 0

π̂(m),k+1 = argmin
π(m)

f (m)(π(m)) +
ρ

2
∥π(m) − (2π(m),k+1 − θ(m),k)∥2

θ(m
′),k+1 =

{
θ(m),k + π̂(m),k+1 − π(m),k+1 if m′ = m

θ(m
′),k if m′ ̸= m.

(2.16)

The randomized DR algorithm eq. (2.16) aims at reducing the computational burden and accelerating the optimiza-
tion process. Such goals can be attained in some situations, depending on the underlying problem and available
computational resources. The particular choice of αm > 0 as the probability of picking up the mth subproblem is
not necessary for convergence: the only requirement is that every subproblem is picked up with a fixed and positive
probability. The intuition behind our choice is that measures that play a more significant role in eq. (2.4) (i.e., higher
αm) should have more chance to be picked by the randomized DR algorithm. Furthermore, the presentation above
where only one measure (subproblem) in eq. (2.16) is drawn is made for the sake of simplicity. One can perfectly
split the set of measures into nb < M bundles, each containing a subset of measures, and select randomly bundles
instead of individual measures. Such an approach proves advantageous in a parallel computing environment with
nb available machines/processors (see Figure 2.3 in the numerical section). The almost surely (i.e., with probability
one) convergence of the randomized DR algorithm depicted in eq. (2.16) can be summarized as follows [68, Thm 2].
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Theorem 3. The sequence {πk} produced by the randomized DR algorithm eq. (2.16) converges almost surely to a
random variable π̄ taking values in the solution set of problem eq. (2.13).

This result is a special case of a thorough analysis given in [34] (see, in particular, Remark 3.5 and Section 5 in
that paper.) We note that the practical performance of the randomized scheme (2.16) depends on computational
resources and is thus not always effective (see Figure 2.3 below). The deterministic and asynchronous decomposition
methods in [33] provide significantly more flexibility in selecting the measure ν(m) (or even part of it) activated at
every iteration and thus may perform better than the randomized scheme above. As these methods do not follow
the general lines of the DR algorithm, we leave the specialization of such approaches to the WB problem for future
research.

In the next section, we further exploit the structure of functions f and g in eq. (2.13) and rearrange terms in the
schemes eq. (2.15) and eq. (2.16) to provide an easy-to-implement and memory-efficient algorithm for computing
balanced and unbalanced WBs.

2.5 The Method of Averaged Marginals (MAM)

Both deterministic and randomized DR algorithms above require evaluating the proximal mapping of the function
g given in eq. (2.13b). In the balanced WB setting, g is the indicator function of B given in eq. (2.10), and thus πk+1

in (2.15) is the projection of θk onto B: πk+1 = ProjB(θ
k). On the other hand, in the unbalanced WB case, g(·) is

the penalized distance function γ distB(·). Computing πk+1 then amounts to evaluating the proximal mapping of
the distance function: minπ distB(π)+

ρ
2γ ∥π− θk∥2. The unique solution to this problem is given by [8, Example

24.28]

πk+1 =

{
ProjB(θ

k) if ρ distB(θ
k) ≤ γ

θk + γ
ρ distB(θk)

(ProjB(θ
k)− θk) otherwise.

(2.17)

Hence, computing πk+1 in both balanced and unbalanced settings boils down to projecting onto the balanced
subspace. This fact allows us to provide a unified algorithm for WB and UWB problems.

2.5.1 Projecting onto the subspace of balanced plans

In what follows we exploit the particular geometry of B to provide an explicit formula for projecting onto this linear
subspace.

Proposition 2. With the notation of Section 2.2, let θ ∈ RR×T ,

am :=
1

S(m)∑M
j=1

1
S(j)

, p(m) :=

S(m)∑
s=1

θ(m)
rs


1≤r≤R

, and p :=

M∑
m=1

amp(m). (2.18a)

The projection π = ProjB(θ) has the explicit form:

π(m)
rs := θ(m)

rs +
(pr − p

(m)
r )

S(m)
, s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M. (2.18b)
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Proof. First, observe that π = ProjB(θ) solves the QP problem min
y(1),...,y(M)

1

2

M∑
m=1

∥y(m) − θ(m),k∥2

s.t
∑S(m)

s=1 y
(m)
rs =

∑S(m+1)

s=1 y
(m+1)
rs , r = 1, . . . , R, m = 1, . . . ,M − 1,

(2.19)

which is only coupled by the “columns” of π: there is no constraint linking π
(m)
rs with π

(m′)
r′s for r ̸= r′ and m and m′

arbitrary. Therefore, we can decompose it by rows: for r = 1, . . . , R, the rth-row (π
(1)
r1 , . . . , π

(1)

rS(1) , . . . , π
(M)
r1 , . . . , π

(M)

rS(M))
of π is the unique solution to the problem

min
w

1

2

M∑
m=1

S(m)∑
s=1

(
w(m)

s − θ(m)
rs

)2
s.t

∑S(m)

s=1 w
(m)
s =

∑S(m+1)

s=1 w
(m+1)
s , m = 1, . . . ,M − 1.

(2.20)

The Lagrangian function of this problem is, for a dual variable u, given by

Lr(w, u) =
1

2

M∑
m=1

S(m)∑
s=1

(
w(m)

s − θ(m)
rs

)2
+

M−1∑
m=1

u(m)
( S(m)∑

s=1

w(m)
s −

S(m+1)∑
s=1

w(m+1)
s

)
. (2.21)

A primal-dual (w, u) solution to problem eq. (2.20) must satisfy the Lagrange system, in particular ∇wLr(w, u) = 0
with w the rth row of π = ProjB(θ), that is,

π
(1)
rs − θ

(1)
rs + u(1) = 0 s = 1, . . . , S(1)

π
(2)
rs − θ

(2)
rs + u(2) − u(1) = 0 s = 1, . . . , S(2)

...

π
(M−1)
rs − θ

(M−1)
rs + u(M−1) − u(M−2) = 0 s = 1, . . . , S(M−1)

π
(M)
rs − θ

(M)
rs − u(M−1) = 0 s = 1, . . . , S(M).

(2.22)

Let us denote pr =
∑S(m)

s=1 π
(m)
rs (no matter m ∈ {1, . . . ,M} because π ∈ B), p(m)

r =
∑S(m)

s=1 θ
(m)
rs (the rth component

of p(m) as defined in eq. (2.18a)), and sum over s the first row of system eq. (2.22) to get

pr − p(1)r + u(1)S(1) = 0 ⇒ u(1) =
p
(1)
r − pr
S(1)

, (2.23)

Now, by summing the second row in eq. (2.22) over s we get

pr − p(2)r + u(2)S(2) − u(1)S(2) = 0 ⇒ u(2) = u(1) +
p
(2)
r − pr
S(2)

. (2.24)

By proceeding in this way and setting u(0) := 0 we obtain

u(m) = u(m−1) +
p
(m)
r − pr
S(m)

, m = 1, . . . ,M − 1. (2.25a)
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Furthermore, for M − 1 we get the alternative formula u(M−1) = −p(M)
r −pr

S(M) . Given these dual values, we can use

eq. (2.22) to conclude that the rth row of π = ProjB(θ) is given as in eq. (3.7). What remains is to show that

pr =
∑S(m)

s=1 π
(m)
rs , as defined above, is alternatively given by eq. (2.18a). To this end, observe that u(M−1) =

u(M−1) − u(0) =
∑M−1

m=1 (u
(m) − u(m−1)), so:

u(M−1) =

M−1∑
m=1

(p(m)
r − pr
S(m)

)
=

M−1∑
m=1

p
(m)
r

S(m)
− pr

M−1∑
m=1

1

S(m)
. (2.26)

Recall that u(M−1) =
pr−p(M)

r

S(M) , i.e., pr = p
(M)
r +u(M−1)S(M). Replacing u(M−1) with the expression eq. (2.26) yields

pr = S(M)
[ p(M)

r

S(M)
+ u(M−1)

]
= S(M)

[ p(M)
r

S(M)
+

M−1∑
m=1

p
(m)
r

S(m)
− pr

M−1∑
m=1

1

S(m)

]
, (2.27)

which implies pr
∑M

m=1
1

S(m) =
∑M

m=1

(
p(m)
r

S(m)

)
. Hence, p is as given in eq. (2.18a), and the proof is complete.

Note that projection can be computed in parallel over the rows, and the average p of the marginals p(m) is the
gathering step between parallel processors.

2.5.2 Evaluating the proximal mapping of transportation costs

In this subsection we turn our attention to the DR algorithm’s second step, which requires solving a convex
optimization problem of the form: minπ f(π) + ρ

2∥π − y∥2 (see eq. (2.15)). Given the additive structure of f
in eq. (2.13b), the above problem can be decomposed into M smaller ones

min
π(m)

f (m)(π(m)) +
ρ

2
∥π(m) − y(m)∥2, m = 1, . . . ,M. (2.28)

Then looking closely at every subproblem above, we can see that we can decompose it even more: the columns of
the transportation plan π(m) are independent in the minimization. Besides, as the following result shows, every
column optimization is simply the projection of an R-dimensional vector onto the simplex ∆R.

Proposition 3. The minimization π̂ := minπ f(π) + ρ
2∥π − y∥2 can be performed exactly, in parallel along the

columns of each transport plan y(m), as follows: for all m ∈ {1, . . . ,M},
π̂
(m)
1s
...

π̂
(m)
Rs

 = Proj
∆R(q

(m)
s )


y1s − 1

ρc
(m)
1s

...

yRs − 1
ρc

(m)
Rs

 , s = 1, . . . , S(m). (2.29)
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Proof. It has already been argued that evaluating the proximal mapping (2.28) (split into M smaller subproblems)
boils down to solving a quadratic program due to the definition of f (m) in (2.12):

min
π(m)≥0

R∑
r=1

S(m)∑
s=1

[
c(m)
rs π(m)

rs +
ρ

2

∣∣∣π(m)
rs − y(m)

rs )
∣∣∣2 ] s.t.

R∑
r=1

π(m)
rs = q(m)

s , s = 1, . . . , S(m). (2.30)

By taking a close look at the above problem, we can see that the objective function is decomposable, and the
constraints couple only the “rows” of π(m). Therefore, we can go further and decompose the above problem per
columns: for s = 1, . . . , S(m), the sth-column of π̂(m) is the unique solution to the R-dimensional problem

min
w≥0

R∑
r=1

[
c(m)
rs wr +

ρ

2
(wr − y(m)

rs )2
]

s.t.

R∑
r=1

wr = q(m)
s , (2.31)

which is nothing but eq. (2.29). Such projection can be performed exactly [35].

Remark 1. If τ = 0, then ∆R(τ) = {0} and the projection onto this set is trivial. Otherwise, τ > 0 and
computing Proj∆R(τ)(w) amounts to projecting onto the R + 1 simplex ∆R: Proj∆R(τ)(w) = τ Proj∆R

(w/τ).
The latter task can be performed exactly by using efficient methods [35]. Hence, evaluating the proximal mapping
in proposition 3 decomposes into T independent projections onto ∆R.

2.5.3 The method of averaged marginals

Our approach is presented in Algorithm 1, which gathers the three main steps from the DR algorithm and integrates
a choice of γ for a simple switch between the balanced and unbalanced cases.

MAM’s interpretation At every iteration, the barycenter approximation pk is a weighted average of the M
marginals p(m) of the plans θ(m),k, m = 1, . . . ,M . As we will shortly see, the whole sequence {pk} converges
(almost surely or deterministically) to a barycenter upon specific assumptions on the choice of the index set at
line 6 of Algorithm 1.

Initialization The choices for θ0 ∈ RR×T and ρ > 0 are arbitrary ones. The prox-parameter ρ > 0 is borrowed
from the DR algorithm, which is known to have an impact on the practical convergence speed. Therefore, ρ should
be tuned for the set of distributions at stake. Some heuristics for tuning this parameter exist for other methods
derived from the DR algorithms [126,129] and can be adapted to the setting of Algorithm 1.

Stopping criteria A possible stopping test is ∥θk+1 − θk∥∞ ≤ Tol, where Tol > 0 is a given tolerance. Alter-
natively, we may stop the algorithm when ∥pk+1 − pk∥ ≤ Tol. or distB(π̂

k) ≤ Tol. These latter tests should be
understood as heuristic criteria.
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Algorithm 1 Method of Averaged Marginals - MAM

▷ Step 0: input
1: Given ρ > 0, the cost matrix and initial point c, θ0 ∈ RR×T , and a ∈ ∆M as in eq. (2.18a), set k ← 0 and

p
(m)
r ←

∑S(m)

s=1 θ
(m),0
rs , r = 1, . . . , R, m = 1, . . . ,M

2: Set γ ←∞ if q(m) ∈ RS(m)

+ , m = 1, . . . ,M , are balanced; otherwise, choose γ ∈ [0,∞)

3: while not converged do
▷ Step 1: average the marginals

4: Compute pk ←
∑M

m=1 amp(m)

5: Set tk = 1 if ρ
√∑M

m=1
∥pk−p(m)∥2

S(m) ≤ γ; otherwise, tk ← γ/

(
ρ
√∑M

m=1
∥pk−p(m)∥2

S(m)

)
6: Choose an index set ∅ ≠Mk ⊆ {1, . . . ,M}
7: for m ∈Mk do

▷ Step 2: update the mth plan
8: for s = 1, . . . , S(m) do

9: Define wr ← θ
(m),k
rs + 2 tk

pk
r−p(m)

r

S(m) − 1
ρc

(m)
rs , r = 1, . . . , R

10: Compute (π̂
(m)
1s , . . . , π̂

(m)
Rs )← Proj

∆R(q
(m)
s )

(w)

11: Update θ
(m),k+1
rs ← π̂

(m)
rs − tk

pk
r−p(m)

r

S(m) , r = 1, . . . , R
12: end for

▷ Step 3: update the mth marginal

13: Update p
(m)
r ←

∑S(m)

s=1 θ
(m),k+1
rs , r = 1, . . . , R

14: end for

15: end while
16: Return p̄← pk

Deterministic and random variants of MAM The most computationally expensive step of MAM is Step 2,
which requires a series of independent projections onto the R+1 simplex (see remark 1). Our approach underlines
that this step can be conducted in parallel over s or, if preferable, over the measures m. As a result, it is a natural
idea to derive a randomized variant of the algorithm. This is the reason for having the possibility of choosing
an index set Mk ⊊ {1, . . . ,M} at line 6 of algorithm 1. For example, we may employ an economical rule and
choose Mk = {m} randomly (with a fixed and positive probability, e.g. αm) at every iteration, or the costly one
Mk = {1, . . . ,M} for all k. The latter yields the deterministic method of averaged marginals, while the former gives
rise to a randomized variant of MAM. Depending on the computational resources, intermediate choices between
these two extremes can perform better in practice.

Remark 2. Suppose that 1 < nb < M processors are available. We may then create a partition A1, . . . , Anb of the
set {1, . . . ,M} (= ∪nbi=1Ai) and define weights βi :=

∑
m∈Ai

αm > 0. Then, at every iteration k, we may draw with

probability βi the subset Ai of measures and setMk = Ai.

This randomized variant would enable the algorithm to compute more iterations per time unit but with less precision
per iteration (since not all the marginals p(m) are updated). Such a randomized variant of MAM is benchmarked

28



D. Mimouni

against its deterministic counterpart in Section 2.6.2.3, where we demonstrate empirically that with certain config-
urations (depending on the number M of probability distributions and the number of processors) this randomized
algorithm can be effective. We highlight that other choices for Mk rather than randomized ones or the deter-
ministic rule Mk = {1, . . . ,M} should be understood as heuristics. Within such a framework, one may choose
Mk ⊊ {1, . . . ,M} deterministically, for instance cyclically or yet by the discrepancy of the marginal p(m) with
respect to the average pk.

Storage complexity Note that the operation at line 8 is trivial if q
(m)
s = 0. This motivates us to remove all

the zero components of q(m) from the problem’s data, and consequently, all the columns s of the cost matrix c(m)

and variables θ, π̂ corresponding to q
(m)
s = 0, m = 1, . . . ,M . In some applications (e.g. general sparse problems),

this strategy significantly reduces the WB problem and thus memory allocation, since the non-taken columns are
both not stored and not treated in the for loops. This remark raises the question of how sparse data impacts the
practical performance of MAM. Section 2.6.1 conducts an empirical analysis on this matter.

In nominal use, the algorithm needs to store the decision variables θ(m) ∈ RR×S(m)

for all m = 1, . . . ,M (transport

plans for every measure), along with M distance matrices c ∈ RR×S(m)

, one barycenter approximation pk ∈ RR,
M approximated marginals p(m) ∈ RR and M marginals q(m) ∈ RS(m). Note that in practical terms, the auxiliary
variables w and π̂ in algorithm 1 can be easily removed from the algorithm’s implementation by merging lines 9-11
into a single one. Hence, by letting T =

∑M
m=1 S

(m), the method’s memory allocation is 2RT + T + M(R + 1)

floating-points. This number can be reduced if the measures share the same cost matrix, i.e., c(m) = c(m
′) for

all m,m′ = 1, . . . ,M . In this case, S(m) = S for all m, T = M S and the method’s memory allocation drops to
RT +RS + T +M(R+ 1) floating-points. In the light of the previous remark this memory complexity should be
treated as an upper bound: the sparser the data the less memory will be needed.

Computation complexity Step 2 of the algorithm involves two main components: projection onto B, which
comprises straightforward operations detailed in Section 2.5.1, and projection onto Π, which relies on leveraging
the simplex projection technique discussed in Section 2.5.2. For each probability measure, the projection onto B
requires 3RS(m) computation operations, where R is the barycenter support size and S(m) denotes the support
size of the probability measure m, which undergoes iteration over its columns. On the other hand, the simplex
projection (line 8) is computationally more intensive. This is due to the adoption of a state-of-the-art algorithm
proposed by Condat [35], which operates in O(R log(R)). Therefore, the complexity of S(m) times line 8 amounts
to O(S(m)R log(R)). Deriving the precise number of computational operations is challenging due to the use of
a sorting algorithm in [35], the complexity of which depends on the characteristics of the input data, hence the
asymptotic complexity estimation. Note that Step 2 must be executed for the M probability measures, but these
operations can be performed in parallel (multiprocessing).

Balanced and unbalanced settings As already mentioned, our approach can handle both balanced and unbal-
anced WB problems. All that is necessary is to choose a finite (positive) value for the parameter γ in the unbalanced
case. Such a parameter is only used to define tk ∈ (0, 1] at every iteration. Indeed, algorithm 1 defines tk = 1 for

all iterations if the WB problem is balanced (because γ = ∞ in this case)4, and tk = γ/

(
ρ
√∑M

m=1
∥pk−p(m)∥2

S(m)

)
4Observe that line 5 can be entirely disregarded in this case, by setting tk = t = 1 fixed at initialization.

29



PhD Thesis

otherwise. This rule for setting up tk is a mere artifice to model eq. (2.17). Indeed, distB(θ
k) = ∥ProjB(θk)− θk∥

reduces to
√∑M

m=1
∥pk−p(m)∥2

S(m) thanks to proposition 2.

Convergence analysis The convergence analysis of algorithm 1 can be summarized as follows.

Theorem 4 (MAM’s convergence analysis). a) (Deterministic MAM.) Consider algorithm 1 with the choice
Mk = {1, . . . ,m} for all k. Then the sequence of points {pk} generated by the algorithm converges to a
point p̄. If the measures are balanced, then p̄ is a balanced WB; otherwise, p̄ is a γ-unbalanced WB.

b) (Randomized MAM.) Consider algorithm 1 with the choice Mk ⊂ {1, . . . ,m} as in remark 2. Then the
sequence of points {pk} generated by the algorithm converges almost surely to a point p̄. If the measures are
balanced, then p̄ is almost surely a balanced WB; otherwise, p̄ is almost surely a γ-unbalanced WB.

Proof. It suffices to show that algorithm 1 is an implementation of the (randomized) DR algorithm and invoke
Theorem 2 for item a) and Theorem 3 for item b). To this end, we first rely on proposition 2 to get that the projection

of θk onto the balanced subspace B is given by θ
(m),k
rs +

(pk
r−p(m)

r )

S(m) , s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M ,

where pk is computed at Step 1 of the algorithm, and the marginals p(m) of θk are computed at Step 0 if k = 0

or at Step 3 otherwise. Therefore, distB(θ
k) = ∥ProjB(θk) − θk∥ =

√∑M
m=1

∥pk−p(m)∥2

S(m) . Now, given the rule

for updating tk in algorithm 1 we can define the auxiliary variable πk+1 as πk+1 = θk + tk(ProjB(θ
k) − θk), or

alternatively,

π(m),k+1
rs = θ(m),k

rs + tk
(pkr − p

(m)
r )

S(m)
, s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M. (2.32)

In the balanced case, tk = 1 for all k (because γ = ∞) and thus πk+1 is as in eq. (3.7). Otherwise, πk+1 is as in
eq. (2.17) (see the comments after algorithm 1). In both cases, πk+1 coincides with the auxiliary variable at the
first step of the DR scheme eq. (2.15) (see the developments at the beginning of this section). Next, observe that
to perform the second step of eq. (2.15) we need to assess y = 2πk+1− θk, which is thanks to the above formula for

πk+1 given by y
(m)
rs = θ

(m),k
rs + 2 tk

pk
r−p(m)

r

S(m) , s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M .

As a result, for the choiceMk = {1, . . . ,M} for all k, Step 2 of algorithm 1 yields, thanks to proposition 3, π̂k+1

as at the second step of eq. (2.15). Furthermore, the updating of θk+1 in the latter coincides with the rule in
algorithm 1: for s = 1, . . . , S(m), r = 1, . . . , R, and m = 1, . . . ,M ,

θ(m),k+1
rs = θ(m),k

rs + π̂(m),k+1
rs − π(m),k+1

rs = θ(m),k
rs + π̂(m),k+1

rs −

(
θ(m),k
rs + tk

(pkr − p
(m)
r )

S(m)

)

= π̂(m),k+1
rs − tk

(pkr − p
(m)
r )

S(m)
.

Hence, for the choice Mk = {1, . . . ,M} for all k, algorithm 1 is the DR Algorithm eq. (2.15) applied to the WB
eq. (2.13). Theorem 2 thus ensures that the sequence {πk} as defined above converges to some π̄ solving eq. (2.13).
To show that {pk} converges to a barycenter, let us first use the property that B is a linear subspace to obtain the
decomposition θ = ProjB(θ) + ProjB⊥(θ) that allows us to rewrite the auxiliary variable πk+1 differently:

πk+1 = θk + tk(ProjB(θ
k)− θk) = θk − tkProjB⊥(θk).
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Let us denote π̃k+1 := ProjB(π
k+1). Then π̃k+1 = ProjB(θ

k − tkProjB⊥(θk)) = ProjB(θ
k), and thus proposition 2

yields

π̃(m),k+1
rs = θ(m),k

rs +
pkr − p

(m)
r

S(m)
s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M,

which in turn gives (by recalling that
∑S(m)

s=1 θ
(m),k
rs = p

(m)
r ):

∑S(m)

s=1 π̃
(m),k+1
rs = pkr , r = 1, . . . , R, m = 1, . . . ,M . As

limk→∞ πk = π̄, limk→∞ π̃k = limk→∞ ProjB(π
k) = ProjB(π̄) =: π̃. Therefore, for all r = 1, . . . , R, m = 1, . . . ,M ,

the following limits are well defined:

p̄r :=

S(m)∑
s=1

π̃(m)
rs = lim

k→∞

S(m)∑
s=1

π̃(m),k+1
rs = lim

k→∞
pkr . (2.33)

We have shown that the whole sequence {pk} converges to p̄. By recalling that π̄ solves eq. (2.13), we conclude
that in the balanced setting π̃ = π̄ and thus p̄ is a WB. On the other hand, in the unbalanced setting, p̄ above is a
γ-unbalanced WB according to definition 7.

The proof of item b) is a verbatim copy of the above proof: the sole difference, given the assumptions on the choice
of Mk, is that we need to rely on theorem 3 (and not on theorem 2 as previously done) to conclude that {πk}
converges almost surely to some π̄ solving eq. (2.13). Thanks to the continuity of the orthogonal projection onto
the subspace B, the limits above yield almost surely convergence of {pk} to a barycenter p̄.

2.6 Numerical experiments

This section illustrates the MAM’s practical performance on some well-known datasets. The impact of different
data structures is studied before the algorithm is compared to state-of-the-art methods. This section closes with an
illustrative example of MAM to compute UWBs. Numerical experiments were conducted using 20 cores (Intel(R)
Xeon(R) Gold 5120 CPU ) and Python 3.9. The test problems and solvers’ codes are available for download in the
link https://ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb.

2.6.1 Study on data structure influence

We start by evaluating the impact of conditions that influence the storage complexity and the algorithm performance.
The main conditions are the sparsity of the data and the number of distributions M . Naturally, the denser the
distributions or the more distributions are treated, the greater the storage. In these configurations, the time per
iteration grows because the number of projects onto the simplex increases. To assess the impact of data sparsity
and the number of measures on the algorithm’s performance, we consider a fixed-support approach and experiment
on datasets inspired by [15, 38]. The number of nested ellipses controls the density of a dataset: as exemplified in
fig. 2.1(a) and table 5.1, measures with only a single ellipse are very sparse. In contrast, a dataset with 5 nested
ellipses is denser.

In this first experiment, we apply MAM with ρ = 100 (without proper tuning) for every dataset. Only a single
processor was considered to avoid CPU communication management. Figure 2.1(b) shows that, as expected, the
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(a) A sample of datasets (b) MAM’s number of iterations per second

Figure 2.1: (a) Example from the artificial nested ellipses datasets. Each column shows one dataset: the first with 1
ellipse, the second with 2 nested ellipses, up to the sixth with 6 nested ellipses. (b) Influence of density and number
of distributions on MAM’s iteration speed (iterations per second).

Table 2.1: Mean density with the number of nested ellipses. The density has been calculated by averaging the ratio
of non-null pixels per image over 100 generated pictures for each dataset sharing the same number of nested ellipses.

Number of ellipses 1 2 3 4 5 6

Density (%) 29.0 51.4 64.3 70.9 73.5 75.0

execution time of an iteration increases with increasing density and number of measures. The number of measures
influences the method’s speed more than density (this phenomenon can be due to the numpy matrix management).
This means the quantity of information in each measure does not seem to make the algorithm less efficient in terms
of speed. Such a result is to be put in regard with algorithms such as B-ADMM [131] that are particularly shaped
for sparse datasets but less efficient for denser ones. Section 2.6.2.4 develops this further. Additionally, it is worth
noting that the proposed method can harness parallel computation, enabling the distribution of work across the M
measures. This approach effectively mitigates the impact of the measure count on computational efficiency.

The growing dimensions of images have an impact on the computation time, as seen in Section 2.5.3. For example,
when treating dense K ×K images for a fixed support problem, the number of operations per probability density
for the projection onto B is OB

1 = 3 ·K2 ·K2 = 3 ·K4 and onto the simplex O∆
1 = K2 ·K2 · log(K2) = 2K4 · log(K).

• For a fixed-support problem with dense (nK) × (nK) images, OB
nK = 3 · (nK)4 = n4 · OB

1 and O∆
nK =
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n4K4 log(n2K2) ≈ n4 ·O∆
1 .

• For a fixed-support problem with dense K × · · · × K = Kd measures, OB
Kd = 3 · (Kd)2 = K2d−4 · OB

1 and

O∆
Kd = (Kd)2 log(Kd) = d

2K
2d−4 ·O∆

1 .

• For a free-support problem, in dimension d, with dense Kd grids, the size of the support R depends on the
numberM of treated measures, R = ((K−1)M+1)d. Following the details of Section 2.5.3, OB

free,Kd = 3((K−
1)M + 1)dKd ≈MdK2d−4OB

1 and O∆
free,Kd = ((K − 1)M + 1)dKd log(((K − 1)M + 1)d) ≈ d

2M
dK2d−4 ·O∆

1 .

For instance, for a fixed-support problem with 40× 40 images (see fig. 2.1), the algorithm computes the projections
for one measure in an average time of 0.01 seconds. However, for the free-support problem formulation with this
dataset of 6 images, it takes 6 seconds per measure. Similarly, for a fixed-support problem with 40×40×40 objects
(ellipsoids with similar properties as in fig. 2.1 in 3D), the projections for one measure take 16 seconds.

2.6.2 Fixed-support approach

This section focuses on the fixed-support approach: R in (2.8) is equal to K2, the number of pixels of a K × K
image.

2.6.2.1 Comparison with IBP

The Iterative Bregman Projection (IBP) [15] is a well-known algorithm for computing Wasserstein barycenters. As
mentioned in the Introduction, IBP employs a regularizing function parameterized by λ > 0, which impacts precision
and must kept at a moderate magnitude to avoid numerical errors (double-precision overflow). The experiment
below sheds light on the differences between MAM and IBP and their advantages depending on the use. Our IBP
code is inspired by the original MATLAB code by G. Peyré5.

2.6.2.2 Qualitative comparison

Here, we use 100 images per digit of the MNIST database [119], where each digit has been randomly translated
and rotated. Each image has 40 × 40 pixels and can be treated as probability distributions after normalization.
Section 2.6.2.2 displays intermediate solutions for digits 3, 4, 5 at different time steps both for MAM and IBP. For
the two methods, the hyperparameters have been tuned: for instance, λ = 1700 is the greatest lambda that enables
IBP to compute the barycenter of the 3’s dataset without double-precision overflow error. Regarding MAM, a range
of values for ρ > 0 have been tested for 100 seconds of execution, to identify which one provides good performance
(for example, ρ = 50 for the dataset of 3’s). Section 2.6.2.2 shows that, for each dataset, IBP gets quickly to a
stable barycenter approximation. Such a point is obtained shortly after with MAM (less than 10 seconds after).
However, MAM continues to move towards a sharper solution. It is clear that the more CPUs used for MAM,
the better. Furthermore, while IBP is not well-suitable for CPU parallelization [15, 92, 131], MAM offers a clear
advantage depending on the hardware at stake.

5https://github.com/gpeyre/2014-SISC-BregmanOT
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2.6.2.3 Quantitative comparison

Next, we benchmark MAM, randomized MAM and IBP on a dataset with 60 images per digit of the MNIST
database [119], where every digit is a normalized image 40 × 40 pixels. First, all three methods have their hyper-
parameters tuned thanks to a sensitivity study as explained in Section 2.6.2.2. Then, at every time step an approx-
imation of the computed barycenter is stored to compute the error W̄ 2

2 (p
k)− W̄ 2

2 (pG) :=
∑M

m=1
1
MW 2

2 (µ
k, ν(m))−∑M

m=1
1
MW 2

2 (µG, ν
(m))), where µG is a fixed-support barycenter computed using Gurobi to solve the LP eq. (2.8).

For this dataset, Figure 2.3 shows that IBP is almost 10 times faster per iteration. However, IBP computes a solution
to the regularized model, not to the (fixed-support) WB linear problem (2.8). Instead, MAM does converge to a
solution of (2.8). So there is a threshold where the accuracy of MAM exceeds that of IBP: in our case, around
200s - for the computation with the greatest number of processors (see Figure 2.3). Such a threshold always exists
depending on the computational means (hardware). This quantitative study explains what has been exemplified
with the images of Section 2.6.2.2: the accuracy of IBP is bounded by the choice of λ, itself bounded by an overflow
error. In contrast, the MAM hyperparameter only impacts the convergence speed. For this dataset, the WB
computed by IBP is within 2% of accuracy and thus reasonably good. However, as shown in Table 1 in [131], one
can choose other datasets where IBP’s accuracy might be unsatisfactory.

Furthermore, Figure 2.3 exemplifies an attractive asset of randomized variants of MAM: in some configurations,
randomized MAM is more efficient than (deterministic) MAM. (The curve MAM 1-random, 1 processor does not
appear in the figure because it is above the y-axis value range due to its bad performance.) Indeed, a trade-off
exists between time spent per iteration and precision gained after an iteration. For example, with 10 processors,
each processor treats six measures in the deterministic MAM, but only one is treated in the randomized MAM.
Therefore, the time spent per iteration is roughly six times shorter in the latter, which counterbalances the loss
of accuracy per iteration. On the other hand, when using 20 processors, only three measures are treated by each
processor, and the trade-off is not worth it anymore: the gain in time does not compensate for the loss in accuracy
per iteration. One should adapt the use of the algorithm with care since this trade-off conclusion is only heuristic
and strongly depends on the underlying dataset and hardware. A sensitivity analysis is always a good thought for
choosing the most effective amount of measures handled per processor while using the randomized MAM against
the deterministic MAM

2.6.2.4 Influence of the support

This section echoes Section 2.6.1 and studies the influence of the support size. To do so, two datasets have been
tested for MAM and IBP. The first dataset is already used in Section 2.6.2.3: 60 pictures of 3’s taken from the
MNIST database [119]. The second dataset is also composed of these 60 images but each digit has been randomly
translated and rotated in the same way as in section 2.6.2.2. Therefore, the union of the support of the second
dataset is greater than the first one.

section 2.6.2.4 presents two graphs that have been obtained just as in Section 2.6.2.3, but displaying the evolution

in percentage: ∆W% :=
W̄ 2

2 (p
k)−W̄ 2

2 (pG)

W̄ 2
2 (pG)

× 100. Once more, the hyperparameters have been fully tuned. The

hyperparameter of the IBP method is smaller for the second dataset. Indeed, as stated in [131], the greater the
support, the stronger the restrictions on λ, and thus, the less precise IBP.
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2.6.2.5 Comparison with B-ADMM

This subsection compares MAM with the algorithm B-ADMM of [124] using the dataset and MATLAB implementation
provided by the authors at the link https://github.com/bobye/d2_kmeans. We omit IBP in our analysis because
it has already been shown in [124, Table I] that IBP is outperformed by B-ADMM in this dataset. As in [124, Section
IV], we consider M = 1000 discrete measures, each with a sparse finite support set obtained by clustering pixel
colors of images. The average number of support points is around 6, and the barycenter’s number of fixed-support
points is R = 60. The optimal value of (2.8) is 712.7, computed in 10.6 seconds by the Gurobi LP solver. We
have coded MAM in MATLAB to have a fair comparison with the MATLAB B-ADMM algorithm provided at the above
link. Since MAM and B-ADMM use different stopping tests, we have set their stopping tolerances equal to zero
and let the solvers stop with a maximum number of iterations. Table 2.2 below reports CPU time in seconds and
the objective values yielded by the (approximated) barycenter p̃ computed by both solvers: W̄ 2

2 (p̃).

Table 2.2: MAM vs B-ADMM. B-ADMM code is the one provided by its designers without changing parameters
(except the stopping set to zero and the maximum number of iterations). Both algorithms use the same initial
point. The optimal value of the WB barycenter for this dataset is 712.7, computed by Gurobi in 10.6 seconds.

Iterations
Objective value Seconds

B-ADMM MAM B-ADMM MAM
100 742.8 716.7 1.1 1.1
200 725.9 714.1 2.4 2.2
500 716.5 713.3 5.6 5.4
1000 714.1 712.9 11.8 10.8
1500 713.5 712.8 18.9 16.2
2000 713.3 712.8 25.1 21.6
2500 713.2 712.8 31.0 27.1
3000 713.1 712.7 39.8 32.4

The results show that, for the considered dataset, MAM and B-ADMM are comparable regarding CPU time, with
MAM providing more precise results. B-ADMM currently lacks a convergence analysis, unlike MAM.

2.6.3 Free-support approach

This section considers the free-support problem (see Section 2.2, theorem 1), where the measures are supported on
the same discrete grid in R2 (d = 2) and αm = 1

M for all m = 1, . . . ,M . The dataset we use is the one from [2],
illustrated in Figure 2.5. In this case, M = 10 measures, S = K2 = 602 and R = ((K−1)M +1)d = 5912 = 349281.
The resulting LP problem is too large to be solved by standard solvers. Therefore, we employed the dedicated solver
of [2], available at the link https://github.com/eboix/high_precision_barycenters.

Figure 2.6 presents the evolution of the points computed by MAM along 9 hours of processing. The image on the
right-hand side is an exact barycenter computed by the solver of [2] after 3.5 hours. We recall that [2] handles the
dual of (2.8) by employing a geometry-based separation oracle. Once the dual is solved, the method recovers a
primal vertex, yielding thus a sparse WB. As a result, the right-hand side image in Figure 2.6 is sharp. Such an
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exact WB is sharper than the point provided by MAM after 9 hours.

Despite the visual differences, the point provided by MAM is a Wasserstein barycenter. To see this, we compare the
values of the objective function in (2.8), i.e., the Wassersein barycentric distance. The exact solution of the method
in [2] has a barycentric distance of 0.2666. After 1 hour of processing, our method had a barycenter distance of
0.2702, which improved to 0.2667 after 3.5 hours, when the solver [2] halts. The slight visual difference stems from
the fact that [2] finds a vertex solution to WB problem while MAM does not.

Figure 2.7 illustrates MAM’s iterative process. Let π̂(m),k be the mth transportation plan computed by MAM
at iteration k (see Line 8 of Algorithm 1). Note that Ŵ 2

2 (p
k) :=

∑M
m=1⟨c(m), π̂(m),k⟩ is an approximation to

W̄ 2
2 (p

k) :=
∑M

m=1 W
2
2 (µ

k, ν(m)), the exact function value (barycentric distance) at iteration k. Furthermore, as it
can be seen from the Douglas-Rachford algorithm in eq. (2.15), the transport plans π̂(m),k do not necessarily respect
the constraint embodied by B. Thus, the approximate value Ŵ 2

2 (p
k) has to be seen in perspective with the distance of

π̂k to B, i.e., distB(π̂k). Figure 2.7 shows the evolution of the approximate barycentric distance Ŵ 2
2 (p

k), infeasibility
measure distB(π̂

k), exact barycentric distance W̄ 2
2 (p

k), and optimal value W̄ 2
2 (pexact) = 0.2666. We emphasize that

W̄ 2
2 (p

k) is computed (by Gurobi) after terminating MAM, while Ŵ 2
2 (p

k) and distB(π̂
k) are computed along the

iterative process. After 3.5 hours, MAM provides W̄ 2
2 (p

k) = 0.2667, Ŵ 2
2 (p

k) = 0.2658 and distB(π̂
k) = 1.27 · 10−5.

Because of its structure, the algorithm of [2] cannot provide intermediary approximations of the barycenters, which
is a disadvantage of the method over MAM. As an example, we consider M = 10 images 40 × 40 presented in
Section 2.6.2.3. Although smaller, these images are much denser than the ones in Figure 2.5 and thus the WB
problem is more complicated. While MAM can provide free-support WB approximations all along its iterative
process, the solver of [2] could not provide a solution after 50 hours of processing.

2.6.4 Unbalanced Wasserstein barycenters

This section treats a particular example to illustrate the interest in using UWB. The artificial dataset is composed
of 50 images with resolution 80×80. Each image is divided into four squares. The top left, bottom left, and bottom
right squares are randomly filled with double nested ellipses and the top right square is always empty as exemplified
in Figure 2.8. In this example, every image is normalized to depict a probability measure so that we can compare
(fixed-support) WB and UWB.

With respect to eq. (2.11), one set of constraints is relaxed and the influence of the hyperparameter γ is studied. If γ
is large enough (i.e. greater than ∥vec(c)∥ ≈ 1000, see Proposition 1), the problem boils down to the standard WB
problem since the example deals with probability measures: the resulting UWB is indeed a WB. When decreasing γ
the transportation costs take more importance than the distance to B which is more and more relaxed. Therefore,
as illustrated by Figure 2.9, the resulting UWB splits the image into four parts, giving visual meaning to the
fixed-support barycenter.

In the same vein, Figure 2.10 provides an illustrative application of MAM for computing UWB in another dataset.
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Figure 2.2: (top) For each digit 36 out of the 100 scaled, translated, and rotated images considered for each
barycenter. (bottom) Barycenters after t = 10, 50, 500, 1000, 2000 seconds, where the left-hand-side is the IBP
evolution of its barycenter approximation, the middle panel is MAM’s evolution using 10 CPU and the right-hand-
side is a solution computed by applying Gurobi to the LP eq. (2.8).
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Figure 2.3: Evolution with respect to time of the difference between the Wasserstein barycenter distance of an
approximation, W̄ 2

2 (p
k), and the Wasserstein barycentric distance of the exact solution W̄ 2

2 (pG) given by the LP.
The time step between two points is 30 seconds. The plot MAM 1-random, 1 processor is out of scope.

Figure 2.4: Evolution of the percentage of the distance between the exact solution of the barycenter problem and
the computed solution using IBP and MAM method with 20 processors: (left) for the standard MNIST, (right) for
the randomly translated and rotated MNIST.

Figure 2.5: Five 60× 60 images from the nested ellipses dataset in [2].
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Figure 2.6: Evolution of the approximated MAM barycenter with time in regards with the exact barycenter of the
Altschuler and Bois-Adsera algorithm computed in 4 hours [2].

Figure 2.7: Evolution of the approximated Wasserstein barycenter distance Ŵ 2
2 (p

k) with iterations (k) and time.
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Figure 2.8: Dataset composed of 50 pictures with nested ellipses randomly positioned in the top left, bottom right,
and left corners.

Figure 2.9: UWB computed with MAM for different values of γ.

Figure 2.10: (left) UWB for a dataset of letters M-A-M built in the same logic than fig. 2.8 with 50 figures: (right)
resulting UWB with γ = 0.01, computed in 200 seconds using 10 processors.
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Chapter 3

The constrained Wasserstein barycenter
problem

This chapter extends the notion of Wasserstein barycenters in order to make the core optimization problem under-
lying scenario tree reduction more flexible, paving the way for further research.

Abstract This chapter presents two optimization methods to compute, subject to constraints, a Wasserstein
barycenter (WB) of finitely many empirical probability measures. The new measure, denoted by constrained
Wasserstein barycenter, extends the applicability of the standard WB to pre-required geometrical or statistical
constraints. Our first approach is an extension of the Method of Averaged Marginals described in Chapter 2 to
compute WBs subject to convex constraints. In the nonconvex setting, we propose an optimization model whose
necessary optimality conditions are written as a linkage problem with non-elicitable monotonicity. To solve such a
linkage problem, we combine the Progressive Decoupling Algorithm (Rockafellar, 2019) with Difference-of-Convex
programming techniques. We give the mathematical properties of our approaches and evaluate their numerical
performances in two applications, demonstrating both their computational efficiency and the practical relevance of
constrained Wasserstein barycenters.

The main content of this chapter will appear in [84]: Mimouni, de Oliveira, Sempere, (2025). On the Computation
of Constrained Wasserstein Barycenters. Pacific Journal of Optimization for a special issue dedicated to Professor
R. Tyrrell Rockafellar.
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3.1 Introduction

Due to its ability to aggregate and summarize probability measures while preserving spatial characteristics, the con-
cept of Wasserstein barycenter has gained prominence across diverse applications, ranging from applied probability,
passing through imaging to machine learning [27].

While the dedicated literature on numerical methods for computing WBs focuses mostly on the unconstrained
setting, that is, µ can be freely chosen in the space P(Rd), many practical situations require the target barycenter
to satisfy certain constraints, ensuring it belongs to a predefined closed set X. Mathematically, the problem of
computing a constrained Wasserstein barycenter (CWB) can be formulated as

min
µ∈P(Rd)

1

M

M∑
m=1

W 2
2 (µ, ν

m) s.t. µ ∈ X . (3.1)

The additional constraint µ ∈ X is particularly relevant in applications where the barycenter must adhere to specific
structural or operational requirements, or align with prior knowledge about the desired properties of µ. The set X
can influence the geometry of the barycenter, its statistical properties, its support, or its physical suitability. Hence,
problem (3.1) offers greater modeling flexibility to tackle WB applications. For instance, the work [113] employs
CWBs in image morphing applications. The authors consider variants of problem (3.1) with X being manifolds,
modeling sparsity or generative adversarial network (GAN)-based representations. They show that when compared
with unconstrained WBs, model (3.1) provides superior results for tasks like natural image morphing, offering
smooth, visually plausible transitions without introducing artifacts. By leveraging priors like GANs, [113] handles
nonconvex constraints with a heuristic inspired by the ADMM algorithm.

Another application where a constrained barycenter is sought arises when summarizing images by restricting the
total number of pixels that can have nonzero mass. In such an application, a black-and-white image can be associated
with a probability measure: the pixels (positions) constitute the measure’s support, while the intensity of each pixel
represents the measure’s (probability) mass. Figure 3.1c shows an unconstrained WB of the two top images 3.1a
and 3.1b, computed by solving the unconstrained problem (2.4). Those images are of dimension 40× 40, i.e., they
have 1600 pixels. To compute a summarized picture with at most 80 pixels with non-zero mass, one may think of
defining X as being the set of 40× 40 images with such a property and project the WB of Figure 3.1c onto X. Such
a naive approach gives the image in Figure 3.1d, which does not keep the entire relevant information. On the other
hand, by considering (a model for) the constrained problem (3.1) with such a set X and applying the algorithm we
present in Section 3.4, we get the image depicted in Figure 3.1e.

To the best of our knowledge, this is the first time that equation (3.1) is addressed in the general case. However,
we note that it is not the only approach to modeling restrictions in WB applications. Some authors have studied
constraints on the transport plans, usually to address specific applications, such as those arising in finance, mar-
tingale transport problems, and other domains (see, for instance, [10, 49, 57] and [94, §4.20 and §10.12]). In these
contexts, methods based on iterative Bregman projections, such as those discussed in [94], have been adapted to
handle the additional constraints by alternating projections. In either of these models, the convexity of the addi-
tional constraints evidently plays an important role in numerical optimization. But while assuming this convexity
simplifies the optimization model, it also reduces its applicability in real-world tasks where nonconvex constraints
are common. Furthermore, scalability and interpretability of solutions remain open challenges when dealing with
high-dimensional or structured data.
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(a) Noisy image of a 90. (b) Second noisy image of a 90.

(c) Unconstrained barycenter.
(d) Unconstrained barycenter projected
onto X.

(e) Constrained barycenter.

Figure 3.1: Unconstrained WB, projection of the unconstrained WB, and sparse barycenter of the two noisy images 3.1a and 3.1b.

Contributions and organization This chapter presents two approaches to tackle constrained Wasserstein
barycenter problems. Our first contribution on the computation of constrained WBs is the extension of the Method
of Averaged Marginals (MAM) introduced in Chapter 2 to tackle problem (3.1). We show that our extension of
MAM asymptotically computes an exact solution to (3.1) provided the constraints are convex. As the original
method of [85], our algorithm copes with scalability issues and is memory efficient. In the nonconvex setting, our
approach becomes an heuristic that works notably well in some applications, as evidenced by our numerical results.

To cope with nonconvexity in a mathematically sound approach, we propose a relaxed model for (3.1) based on
the penalization of the squared distance from the nonconvex set. As we show in Section 3.4, our model consists
of minimizing a nonsmooth Difference-of-Convex (DC) function over a linear subspace. Its necessary optimality
conditions can be written as a linkage problem. However, since convexity cannot be elicited at any level, Rockafellar’s
compelling Progressive Decoupling Algorithm [101] (see also [102] and [117]) cannot be directly applied. Based on
the recent work [45], we specialize the progressive decoupling strategy to the constrained WB setting to design an
algorithm with convergence guarantees to solve such a linkage problem, computing thus points satisfying certain
necessary optimality condition to our relaxed (penalized) model for (3.1). As a further contribution, we conduct
experiments on several data sets from the literature to demonstrate the computational efficiency and accuracy of
the new approaches.

This chapter is structured as follows. Section 3.2 provides some background material on Wasserstein barycenter
problems. Section 3.3 extends the Method of Averaged Marginals (MAM) of [85] to tackle (3.1) when X is convex.
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Then, numerical results are shown where our approach is experimented with convex and nonconvex constraints.
The precise case of nonconvex sets is addressed in Section 3.4, where we propose a relaxed model for (3.1) and
present a progressive decoupling strategy with convergence guarantees. Finally, a numerical illustration comparing
the approaches closes the work.

3.2 Background material

As developped in Chapter 2, the definition of the support of a measure νm entails that νm(ζms ) = qms > 0 for all
s = 1, . . . , Sm. As computing a WB of M measures νm amounts to determine a new measure µ̄ solving (2.4), it turns
out that such a task consists of choosing simultaneously a support supp(µ̄) and a probability vector p̄ minimizing
the (weighted) Wasserstein distance to all M measures. As for the decision on the support, Proposition 1 in [6]
asserts that every solution µ̄ to (2.4) with αm = 1

M for all m = 1, . . . ,M has support satisfying the following key
inclusion:

supp(µ̄) ⊂ Ξ :=
{
ξ1, . . . , ξR

}
(3.2)

:=

{
1

M

M∑
m=1

ζm : ζm ∈ supp(νm), m = 1, . . . ,M

}
.

Thanks to this result, we can work with the fixed set Ξ having finitely many R atoms1 and optimize only with
respect to the probability vector: once p̄ ∈ ∆R is determined, we can recover a WB measure by setting

µ̄ =
∑

r∈{j:p̄j>0}

p̄rδξr . (3.3)

Because of (3.2), imposing a constraint of the type µ ∈ X can be done by restricting p in (2.8) in Chapter 2 to a
certain set X ⊂ RR related to X. In other words, in the empirical setting, the constrained WB problem (3.1) can
be alternatively written as follows, for a set X ⊂ RR associated X ⊂ P(Rd):

min
p∈X, π≥0

M∑
m=1

1

M

R∑
r=1

Sm∑
s=1

∥ξr − ζms ∥2πm
rs

s.t. (πm)⊤ 1R = qm, m = 1, . . . ,M

πm 1Sm = p, m = 1, . . . ,M,

(3.4)

where 1R is the column vector of all ones of size R.
We highlight that this problem is solvable as long as X is closed and intersects the simplex ∆R. Observe further
that while (2.8) in Chapter 2 is always an LP, problem (3.4) can be a nonconvex nonlinear optimization problem
depending on X. To give examples of how the set of constraints X on the measure relates to the set of constraints
X on the probability vector, suppose we impose Wasserstein barycenters to have expected value equal to a given
ξ̄ ∈ Rd. In this case,

X =
{
µ ∈ P(Rd) : Eµ[ξ] = ξ̄

}
and the corresponding set is X =

{
p ∈ RR :

R∑
r=1

prξr = ξ̄

}
.

1The WB’s support size R is determined in function of the number M of measures νm and their support sizes Sm, m = 1, . . . ,M ;
see [6].
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Such a setting finds applications, for instance, in scenario tree reduction where one might be interested in assigning
probabilities to a smaller scenario tree in order to minimize the sum of Wasserstein distances while preserving, in
every subtree issued by a node, certain theoretical expected value; see [47, §3.1] and [86]. If, instead, we require µ
to have a support size of at most n ≥ 1 atoms, then

X =
{
µ ∈ P(Rd) : |supp(µ)| ≤ n

}
and the corresponding set is X =

{
p ∈ RR : ∥p∥0 ≤ n

}
,

where ∥p∥0 counts the number of nonzero components of the vector p. This is the setting considered in Figure 3.1e.

3.3 Constrained Wasserstein barycenters

In the unconstrained setting, the Method of Averaged Marginals (MAM) proposed in Chapter 2 solves the LP
problem (2.8) in Chapter 2 by exploiting its particular structure and applying the Douglas-Rachford splitting
method (DR) [50,53]. The resulting algorithm is memory efficient, can run in a deterministic or randomized fashion,
copes with scalability issues, and has convergence guarantees. It updates transportation plans by projecting (in
parallel) several vectors of dimension R onto sets of the form of ∆R(τ), with given scalar τ > 0. This task can
be performed exactly and efficiently using specialized methods [35]. Once the transportation plans are updated,
its marginals pm, m = 1, . . . ,M are easily computed and an estimation of the probability vector yielding a WB is
computed by averaging these marginals. We refer the interested reader to [85, §5] for a thorough discussion about
the method and its convergence analysis. In what follows, our goal is to extend MAM to compute constrained WBs.

3.3.1 The method of averaged marginals for constrained WBs

This section features our first contribution: the extension of MAM to compute a solution µ̄ to problem (3.1). As
discussed in Section 3.2, this amounts to compute a p-part solution p̄ to problem (3.4) and recover µ̄ as in (3.3).
To this end, we make the following assumption.

Assumption 1. The set X ⊂ RR in (3.4) is closed, and satisfies X ∩ ∆R ̸= ∅. Furthermore, the Euclidean
projection onto it is convenient to execute.

We recall that closeness of X and condition X ∩ ∆R ̸= ∅ are enough to ensure that (3.4) is solvable. Next, by
denoting

cmrs :=
1

M
∥ξr − ζms ∥2 ∀ r, s, m, and inner product ⟨c, π⟩ :=

∑
r,s,m

cmrsπ
m
rs,

we drop the decision variable p in (3.4) and rewrite the problem in the following compact form:

min
π∈BX

⟨c, π⟩ s.t. πm ∈ Πm, m = 1, . . . ,M, (3.5a)

where
Πm :=

{
πm ≥ 0 : (πm)⊤ 1R = qm

}
, m = 1, . . . ,M, (3.5b)

and
BX :=

{
π = (π1, . . . , πM ) : π1 1S1 = π2 1S2 = · · · = πM 1SM ∈ X

}
. (3.5c)
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Thus, once problem (3.5) is solved, we can easily recover a p-solution to problem (3.4) and, as a consequence, a
constrained WB measure µ̄.

To solve (3.5), we follow the lead of [85] and employ the DR algorithm, which asymptotically computes a solution
by repeating the following steps, with k = 0, 1, . . ., given initial point θ0 = (θ1,0, . . . , θM,0), and prox-parameter
ρ > 0: 

πk+1 = ProjBX
(θk)

π̂k+1 = argmin
π∈Π
⟨c, π⟩+ ρ

2
∥π − (2πk+1 − θk)∥2

θk+1 = θk + π̂k+1 − πk+1,

(3.6)

with Π := Π1× . . .×ΠM . Assumption 1 ensures that the functions above are proper, convex, lower-semicontinuous,
and problem (3.5) is solvable. The following is a direct consequence of Theorem 25.6 and Corollary 27.4 of [8].

Theorem 5. Suppose X is convex and Assumption 1 holds. Then the sequence {θk} produced by the DR algo-
rithm (3.6) converges to a point θ̄, and the following holds: π̄ := ProjBX

(θ̄) solves (3.5), and {πk} and {π̂k}
converge to π̄.

The DR algorithm is attractive when the two first steps in (3.6) are convenient to execute, which is the case in our
setting as seen in Chapter 2.

The following original result, which does not require X to be convex, shows that the first step in (3.6) is simple
provided the projection onto X is convenient to execute.

Proposition 4. Let θ = (θ1, . . . , θM ) ∈ RR×(S1+···+SM ), am :=
1

Sm
1

S1 +···+ 1

SM
, and pm := θm 1Sm , m = 1, . . . ,M .

Given a nonempty and closed set X ⊂ RR, let p ∈ ProjX(
∑M

m=1 ampm) and BX given in (3.5c). Then, an element
π ∈ ProjBX

(θ) has the form

πm
:s = θm:s +

(p− pm)

Sm
, (3.7)

for all m = 1, . . . ,M and s = 1, . . . , Sm.

Proof. Given an arbitrary w ∈ RR, let us define the set

Bw :=
{
π = (π1, . . . , πM ) : π1 1S1 = π2 1S2 = · · · = πM 1SM = w

}
.

Observe that Bw is nonempty2 and BX in (3.5c) can be written as BX = ∪w∈XBw. Therefore, computing a point
in ProjBX

(θ) can be done by solving

min
y∈BX

1

2
∥y − θ∥2 = min

w∈X, y∈Bw

1

2
∥y − θ∥2 = min

w∈X

{
min
y∈Bw

1

2
∥y − θ∥2

}
.

The inner problem above is nothing but the projection onto Bw. It can be written as

z = ProjBw
(θ) =

 argmin
y

1

2

M∑
m=1

∥ym − θm∥2

s.t.
∑Sm

s=1 y
m
rs − wr = 0, r = 1, . . . , R, m = 1, . . . ,M.

2The plans πm
:1 = w and πm

:s = 0 for s ̸= 1 compose a point π that belongs to Bw.
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Being a solvable strongly convex quadratic program problem, the existence of Lagrange multipliers is ensured. As
a result, the optimality conditions for this problem read as

(zmrs − θmrs) + λm
r = 0, ∀ r, s,m (3.8)

Sm∑
s=1

zmrs = wr, ∀ r,m. (3.9)

Note that summing equation (3.8) over s = 1, . . . , Sm, with r and m fixed, gives

λm
r =

∑Sm

s=1 θ
m
rs −

∑Sm

s=1 z
m
rs

Sm
=

pmr − wr

Sm
, ∀ r,m

where the last equality follows by (3.9) and definition of pm. As a result, we conclude that z = ProjBw
(θ) is given

by

zmrs = θmrs +
wr − pmr

Sm
, ∀ r, s,m. (3.10)

Next, we show that when w ∈ X is an element of ProjX(
∑M

m=1 ampm), then z above belongs to the set ProjBX
(θ).

Indeed,

∥z − θ∥2 =

M∑
m=1

∥zm − θm∥2 =

M∑
m=1

Sm∥w − pm

Sm
∥2 =

M∑
m=1

1

Sm
∥w − pm∥2,

and thus

arg min
w∈X

{
min
y∈Bw

1

2
∥y − θ∥2

}
= arg min

w∈X

1

2

M∑
m=1

1

Sm
∥w − pm∥2

= arg min
w∈X

1

2

M∑
m=1

1
Sm ∥w − pm∥2

1∑M
j=1

1

Sj

= arg min
w∈X

1

2

M∑
m=1

am∥w − pm∥2

= arg min
w∈X

1

2

M∑
m=1

{
am∥w∥2 − 2amw⊤pm + am∥pm∥2

}
= arg min

w∈X

1

2

{
∥w∥2

M∑
m=1

am − 2w⊤

(
M∑

m=1

ampm

)}

= ProjX

(
M∑

m=1

ampm

)
,

because
∑M

m=1 am = 1. This shows that the minimum value of min
w∈X

min
y∈Bw

∥y − θ∥2 is reached at z given in (3.10)

and w ∈ ProjX(
∑M

m=1 ampm). The proof is thus complete.

Recall that this proposition does not assume convexity of X. Hence, whether convexity is present or not, projecting

onto BX ⊂ RR×(S1+···+SM ) is simple as long as the projection onto X ⊂ RR is easy to perform. By relying on
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Propositions 3 and 4, we now gather and simplify the three steps of the DR Algorithm 3.6 to provide our extension
of the MAM algorithm of [85] to the constrained setting. We start by invoking Proposition 3 that allows us to

decompose the second step of DR Algorithm 3.6 into
∑M

m=1 S
m simple projections: every column of π̂m,k+1 is given

by

π̂m,k+1
:s = Proj∆R(qms )

(
2πm,k+1

:s − θm,k
:s − 1

ρ
cm:s

)
∀ s,m.

It follows from Proposition 4, with pk ∈ ProjX(
∑m

m=1 ampm,k), and pm,k = θm,k 1Sm , that 2πm,k+1
:s − θm,k

:s =

2(θm,k
:s + pk−pm,k

Sm )− θm,k
:s = θm,k

:s + 2pk−pm,k

Sm . Therefore,

π̂m,k+1
:s = Proj∆R(qms )

(
θm,k
:s + 2

pk − pm,k

Sm
− 1

ρ
cm:s

)
∀ s,m.

Furthermore, the step θk+1 = θk + π̂k+1 − πk+1 in the DR algorithm boils down to

θm,k+1
:s = θm,k

:s + Proj∆R(qms )

(
θm,k
:s + 2

pk − pm,k

Sm
− 1

ρ
cm:s

)
− θm,k

:s − pk − pm,k

Sm

= Proj∆R(qms )

(
θm,k
:s + 2

pk − pm,k

Sm
− 1

ρ
cm:s

)
− pk − pm,k

Sm
, ∀ s,m.

Putting all together and removing the variables πk and π̂k we get the extension of MAM presented in Algorithm 2.

Algorithm 2 Method of Averaged Marginals for Constrained WBs

1: Input: M empirical probability measures νm ∈ P(Rd), initial plan θm ∈ RR×Sm
, set X of constraints, and a scalar ρ > 0

2: Define cmrs := 1
M
∥ξr − ζms ∥2, for all r = 1, . . . , R, s = 1, . . . , Sm and m = 1, . . . ,M

3: Set am := ( 1
Sm )/(

∑M
j=1

1
Sj ) and pmr :=

∑Sm

s=1 θ
m
r,s, m = 1, . . . ,M r = 1, . . . , R

4: while not converged do

5: p← ProjX(
∑M

m=1 ampm)

6: for m = 1, . . . ,M do
7: for s = 1, . . . , Sm do

8: θmr,s ← Proj∆R(qms )

(
θmr,s + 2 p−pm

Sm − 1
ρ
cmr,s

)
− p−pm

Sm r = 1, . . . , R

9: end for
10: pmr ←

∑Sm

s=1 θ
m
r,s r = 1, . . . , R

11: end for

12: end while
13: return p

A possible manner to stop Algorithm 2 is when the barycenter estimate p stabilizes. As commented in [85, §5], this
should be seen as a heuristic stopping test. In the next result, we index the variables p and θ in Algorithm 2 by k,
which represents a pass between lines 4 and 12.

Theorem 6. Suppose X is convex and Assumption 1 holds. Then the sequence {(pk, θk)} produced by the Algo-
rithm 2 converges to a point (p̄, θ̄), with (p̄, ProjBX

(θ̄)) solving (3.4).
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Proof. As presented, Algorithm 2 is the DR algorithm (3.6) applied to problem (3.5). Recall that X is convex and
closed. As X ∩∆R ̸= ∅ in view of Assumption 1, problem (3.5) has a solution, and thus Theorem 5 ensures that:
{θk} converges to a point θ̄, with ProjBX

(θ̄) a solution to (3.5). Proposition 4, with the additional assumption of
convexity of X, asserts that

π̄m
:s = θ̄m:s +

p̄− p̄m

Sm
∀ s,m,

solves (3.5), where p̄m =
∑Sm

s=1 θ̄
m
:s . As

∑Sm

s=1 π̄
m
:s = p̄, for all m, the relation between problems (3.5) ensures that

(p̄, π̄) solves (3.4).

Remark 3. If X = RR, then Algorithm 1 boils down to the Method of Averaged Marginals of [85]. As in that
paper, we can also randomize our algorithm by performing, at every iteration, the projections on line 8 only for a
single measure m chosen at random. In this randomized setting, the convergence results above hold almost surely.
This follows directly from the analysis in [85, Thm. 5.5].

Remark 4. Algorithm 2 is an adaptation of the classical Douglas-Rachford splitting method [50,77]. This algorithm
is known to exhibit a general convergence rate of O(1/k), where k denotes the number of iterations performed [62].
Equivalently, it requires approximately O(1/ϵ) iterations to compute an ϵ-accurate solution to problem (3.4).

While Algorithm 2 provides an exact manner for computing a constrained Wasserstein barycenter under Assump-
tion 1, its simplicity and decentralized nature encourage its application in the nonconvex setting. The key insight
is that if one can efficiently compute projections onto X, our approach could be (heuristically) applied to prob-
lem (3.5) even when X is nonconvex. The following section provides numerical insights into what can be obtained
by Algorithm 2 in the convex and nonconvex settings.

3.3.2 Some numerical insights

This subsection presents some practical cases of why constrained WBs are worth considering. We compare uncon-
strained WB, convex and nonconvex constrained WBs, all computed by Algorithm 2 with three different choices
for X (being the first choice X = RR). In the first example, we consider a simple case of a transportation problem
with limited storage locations. In the second instance, a toy problem of image processing is presented. The goal
is to obtain a sparse barycenter that accurately represents the initial data. Reproductible code is available at
https://github.com/dan-mim/Constrained-Optimal-Transport [82].

3.3.2.1 Demand and location storage localization

We consider a localization problem for demand and storage optimization. The dataset comprises demand maps of
a certain product for Paris over a 12-month period (one map per month). Figure 3.2 shows a sample of nine out of
the twelve months, with each map illustrating the aggregated product demand in red. The objective is to determine
optimal storage locations to minimize distribution costs.
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Figure 3.2: Sample of 9 (out of 12) months of collected demand data: the aggregated product demand is represented in red.

First, let us compute an unconstrained Wasserstein barycenter of the demand maps. Such a barycenter, presented in
Figure 3.3a, suggests the need to rent 5726 storage facilities, which is impractical due to high costs in certain areas.
Therefore, we restrict the storage to eight affordable locations Lℓ (marked in red in Figure 3.3b) with capacities
ur > 0 for all r ∈

{
j = 1, . . . , R : ξj ∈ ∪ℓ=1,...,8Lℓ

}
. As such restrictions yield probability (in this case demand)

pr = 0 for locations ξr outside the locations Lℓ, the problem can be recast as a smaller Wasserstein problem with
bound constraints given by the convex set:

X =

p : pr ≤ ur, ∀r s.t. ξr ∈
⋃

ℓ=1,...,8

Lℓ

 .

Projecting the unconstrained barycenter of Figure 3.3a (probability vector pu) onto the affordable areas depicted in
Figure 3.3b results in the map shown in Figure 3.4a. Unfortunately, this projection violates the probabilistic nature
of the barycenter, as the projected solution satisfies only 7% of the total demand: ProjX(pu)⊤ 1R = 0.07. To address
this mismatch, we integrate the affordability constraint directly into the optimization problem to define problem
(3.4), whose solution computed by Algorithm 2 is shown in Figure 3.4b. This solution achieves 100% (

∑R
r=1 pr = 1)

demand fulfillment while requiring only 625 storage facilities. Notably, it identifies new high-utilization locations
(e.g., three sites in the bottom-right corner with approximately 40% occupancy).
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(a) Unconstrained WB with storage occupancy colorbar: 100% accounts
for maximal ur capacity being reached. (b) Affordable areas are shown in red.

Figure 3.3: Unconstrained Barycenter of the demand maps and affordable storage locations.

(a) Unconstrained WB projected onto the set X. (b) Constrained WB computed by Algorithm 2.

Figure 3.4: Projected (unconstrained) WB versus constrained WB.

The (convex) constrained barycenter depicted in Figure 3.4b requires few storages in some locations Lℓ. To maximize
profitability, we introduce a nonconvex constraint that mandates a minimum storage utilization of 40%. The new
constraint set is as follows:

X =

p : pr ∈ {0} ∪ [0.4ur, ur], ∀r s.t. ξr ∈
⋃

ℓ=1,...,8

Lℓ

 .

Projecting the computed (convex constrained) barycenter onto this nonconvex set results in the allocation shown
in Figure 3.5a, fulfilling only 64% of the demand (the projected barycenter is not a probability measure). However,
integrating this nonconvex constraint directly into the optimization problem yields a point (Figure 3.5b) that
satisfies 100% of the demand using only 308 storage facilities, compared to the 625 required previously.
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(a) Convex constrained WB projected onto the nonconvex set X. (b) Nonconvex constrained barycenter computed by Algorithm 2.

Figure 3.5: Projected convex constrained WB versus nonconvex constrained WB.

In summary, in this application, integrating constraints directly into the optimization process consistently produces
better results than applying constraints post hoc. By incorporating both convex and nonconvex constraints, we
achieve a practical solution that balances demand fulfillment and storage cost efficiency. We remark that for the
dataset composed by 12 images of size 100 × 100, Algorithm 2 computed each one of the above (unconstrained,
convex and nonconvex constrained) WBs within a couple of seconds, with none taking significantly longer than the
others.

3.3.3 Sparse barycenter to a set of images

This subsection continues the discussion on the experiments presented in Figure 3.5 and evaluates Algorithm 2 in
the context of nonconvex, constrained Wasserstein barycenter problems. We consider two test cases. In the first
case, we show that our algorithm performs effectively, even though it is a heuristic in the nonconvex setting. The
second test case illustrates a situation where the outcome produced by our approach is not satisfactory. In both
cases, we work with the nonconvex set forcing sparsity:

Xn = {p : ∥p∥0 ≤ n} .

Here, n is a given natural number.
This application naturally arises when working with large datasets: the goal is not only to summarize the dataset
with a Wasserstein barycenter, but also to compress the data to enable faster transmission and reduced memory
storage. Similarly when dealing with scenario trees, we want to obtain a scenario tree that represents well the
original one but with a smaller structure.

Ellipses: We consider a sample of M = 100 images of size R = 60 × 60 with three nested ellipses. Figure 3.6a
shows 25 of these images. A naive strategy to obtain a sparse image summarizing the dataset is first computing a
unconstrained WB, and then projecting it onto Xn. This is exemplified in Figure 3.6b (the two leftmost images)
with n = 150. This strategy is clearly unsatisfactory. On the other hand, Algorithm 2 applied with X = X150

provides the rightmost image in Figure 3.6b, which clearly depicts three nested ellipses. In this test, problem (3.5)

52



D. Mimouni

has the order of 107 decision variables, and we let Algorithm 2 run 5000 iterations, which took about five minutes
on a personal computer.

(a) Sample of 25 out of M = 100 images.
(b) Unconstrained WB, projection of the Unconstrained WB
onto X150, and image provided by Algorithm 2.

Figure 3.6: Sparse WB to a set of M = 100 images. The level of sparsity is chosen to be n = 150.

MNIST: In this experiment, we use as initial input the well-known MNIST database, which includes R = 28×28
images of handwritten numbers. By considering two samples of M = 100 images for the numbers three and five,
we try to compute a sparse barycenter for each of the samples.

As in the previous example, we compare the computed unconstrained WB, its projection onto Xn, and the point
provided by Algorithm 2 with X = Xn. In this experiment, problem (3.5) has the order of 106 decision variables,
and we let Algorithm 2 run 5000 iterations, which took only a couple of minutes. While the unconstrained WB
computed by MAM is meaningful, the sparse points provided by our approach fail to be probability vectors, and
their quality in terms of visual meaning is poor. As shown in Figure 3.7, the projections of such points (including
the unconstrained WB) onto Xn are not useful.
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(a) Results for the number 3. (b) Results for the number 5.

Figure 3.7: Unconstrained, sparse, and projection onto the nonconvex set Xn, with n = 45 for the digit three and n = 47 for the digit
five.

These experiments demonstrate that, while Algorithm 2 is guaranteed to produce meaningful results in the convex
setting, its application as a heuristic in the nonconvex case does not consistently yield satisfactory outcomes. This
observation highlights the necessity of the mathematically rigorous approach presented in the following section.

3.4 A progressive decoupling approach

Algorithm 2 is (asymptotically) exact when the set X is convex. However, the lack of convergence guarantees in the
nonconvex case and the numerical illustration of the last section lead to question its use in some applications where
a nonconvex set X is deemed indispensable. For this reason, we investigate in this section a penalized model for
the nonconvex constrained Wasserstein problem (3.5) and a tailored solving methodology based on the Progressive
Decoupling Algorithm (PDA) of Rockafellar [101]; see also [45,102,117].

Our initial, and unfruitful tentative, was to consider the following relaxed version of (3.5), with η > 0 a penalty
parameter:

min
π
⟨c, π⟩+ η

2
dist2BX

(π) s.t. πm ∈ Πm, m = 1, . . . ,M,

with dist2BX
(π) the squared distance of π from BX . More precisely,

dist2BX
(π) = min

θ∈BX

1

2
∥θ − π∥2 =

1

2
∥π∥2 − max

θ∈BX

{
⟨θ, π⟩ − 1

2
∥θ∥2

}
has a difference-of-convex (DC) structure: the two rightmost functions above are convex on variable π. As a result,
the above penalized model is a DC programming problem [120, § 4.6] for which specialized algorithms exist [43,108].
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However, in our experiments, the results provided by such a DC model were not particularly appealing. This is
why we propose to add the convex constraints

π ∈ B := BRR (see Eq. (3.5c))

to our DC model. The resulting (and more involving) optimization problem reads as follows:

min
π∈B
⟨c, π⟩+ η

2
dist2BX

(π) s.t. πm ∈ Πm, m = 1, . . . ,M. (3.11)

Observe that this problem consists of minimizing a DC function over a linear subspace B. Hence, any solution π̄
to (3.11) is accompanied with a dual variable ȳ solving the linkage problem [101]:

find π̄ ∈ B and ȳ ∈ B⊥ such that ȳ ∈ T (π̄), (3.12)

with T (π) := ∂[⟨c, π⟩ +
∑

m iΠ(π
m)] + η∂Cdist2BX

(π), and ∂C denoting the Clarke subdifferential. (This linkage
problem is nothing other than an alternative way to write the Lagrange system yielding a Clarke stationary point
to (3.11).)

The work [101] investigates linkage problems and proposes the Progressive Decoupling Algorithm as a solving
methodology. PDA solves the linkage problem should monotonicity of T be elicitable at a certain level. See
also [117] and [102] for more details. However, being dist2BX

(π) = ∥π∥2 −
(
2⟨π, ProjBX

(π)⟩ − ∥ProjBX
(π)∥2

)
a

DC function, monotonicity of T above cannot be elicitable at any level, and thus the PDA of [101] is not directly
applicable to our setting [45, § 2.5]. However, we can exploit the DC structure of problem (3.11) using the method
proposed in [45]. To this end, let us write the objective function of (3.11) as

f(π)− h(π), with


f(π) := ⟨c, π⟩+ η

2∥π∥
2

h(π) := η max
θ∈BX

{
⟨θ, π⟩ − 1

2
∥θ∥2

}
.

Recall that B⊥ is the normal cone (at every point) of the linear subspace B. Furthermore, note that the subdifferen-
tial set ∂Ch(π) coincides with the projection set conv(ηProjBX

(π)). The algorithm proposed in [45] linearizes h at a

reference point πℓk (stability center) and defines a new stability center by inexactly solving the convex subproblem
(see Algorithm 1 and Section 3.3 of [45]):

min
π∈B

f(π)− ⟨gℓk , π⟩+ µ

2
∥π − πℓk∥2 s.t. πm ∈ Πm, m = 1, . . . ,M.

Here, µ > 0 is a given parameter. Observe that such a subproblem is a quadratic variant of the unconstrained
Wasserstein barycenter problem (2.8) in Chapter 2. To get around the practical inconvenience of solving difficult
convex subproblems like this per iteration, the work [45] proposes to employ PDA with a safeguard permitting to
stop the algorithm as soon as an incumbent point to (3.11) is found. In this work, the employed safeguard is a
descent test accompanied by a penalty function associated with the constraints πm ∈ Πm. More specifically, we
apply the PDA to the above subproblem to generate a sequence {πk} until a trial point πk+1 satisfying the following
descent test is computed

F (πk+1) ≤ F (πℓk)− κ

2
vk,

with κ ∈ (0, 1
2 ),

F (π) := f(π)− h(π) + Penalty
∑
m

distΠm(πm), Penalty > 0,
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and vk ≥ 0 defined in Algorithm 3 below. When such a descent test is satisfied, we halt PDA, set πℓk+1 = πk+1,
compute a new subgradient gℓk+1 ∈ ηProjBX

(πℓk+1) to define the next subproblem, and repeat the process. Such a
procedure can also be viewed as an inexact DC algorithm, where the convex subproblem is addressed by PDA but
not solved to optimality. Our approach to tackle the nonconvex Wasserstein barycenter model (3.11) is presented
in Algorithm 3.

Remark 5. A few comments on Algorithm 3 are in order.

- Although steps 8, 15 and 25 all require equivalent loops over m and s, these loops cannot be merged, as they
require the previous computation of pk+1 and p̄ℓk+1 in steps 12 and 22, respectively. However, all of those can
be run in parallel over m and s, as none of the steps depend on a previous iteration of the loop.

- If the descent test in step 20 holds for a given iterate ℓk+1 = k+1, the method requires computing a subgradient
of h (equivalently a projection onto BX) at πℓk+1 . This step needs the partial sums over s of πℓk+1 . Note that
the following relation holds

Sm∑
s=1

πℓk+1,m
:s =

Sm∑
s=1

π̂k,m
:s + (pk+1 − pk,m) = pk+1,

so the partial sums of πℓk+1 (independent over m) are equal to pk+1, which is already computed at line 12. By
Proposition 4, projecting onto BX is simple under Assumption 1.

- In our experiments we have initialized y0 as the vector of all zeros. We recall that if the projection onto B is
easy, then the projection onto B⊥ is simple as well, since ProjB⊥(y) = ProjB(y)− y.

- Algorithm 3 is a specialization of the method of [45] to our setting. In addition to the problem’s structure
exploitation, we have considered the simplifications discussed in Subsection 3.3 of [45].

- Note that Algorithm 3 needs three double loops, which increase proportionally with the size of the sample.
Although these steps can be performed in parallel, the number of parallel calls a standard computer can handle
is limited. In practice, these loops can significantly slow down the algorithm.
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Algorithm 3 Progressive decoupling algorithm for nonconvex WB problems

1: Input: M empirical probability measures νm ∈ P(Rd), initial primal and dual variables π ∈ B and y0 ∈ B⊥, and scalars η, ρ > 0,
κ ∈ (0, 1

2
), µ > 2κ and Penalty > 0

2: Define cmrs := 1
M
∥ξr − ζms ∥2, for all r = 1, . . . , R, s = 1, . . . , Sm and m = 1, . . . ,M

3: Set ℓ0 = 0, g0 ∈ ηProjBX
(π0) and am := ( 1

Sm )/(
∑M

j=1
1
Sj ), m = 1, . . . ,M

4: while not converged do
5: zk ← c− yk − gℓk − ρπk − µπℓk

6: for m = 1, . . . ,M do
7: for s = 1, . . . , Sm do

8: π̂k,m
r,s ← Proj∆(qms )

[
− 1

η+ρ
zk,mrs

]
r = 1, . . . , R ▷ Projection onto the simplex

9: end for
10: pk,mr ←

∑Sm

s=1 π̂
k,m
r,s r = 1, . . . , R

11: end for

12: pk+1 ←
∑M

m=1 ampk,m ▷ Barycenter of the current iterate

13: for m = 1, . . . ,M do
14: for s = 1, . . . , Sm do

15: πk+1,m
r,s ← π̂k,m

r,s + pk+1−pk,m

Sm r = 1, . . . , R ▷ Projection onto B
16: end for
17: end for

18: yk+1 ← yk − ρ(π̂k − πk)
19: vk ← max{∥πk+1 − πℓk∥2, ∥yk+1 − yk∥2, ∥πk+1 − πk∥2}

20: if F (πk+1) ≤ F (πℓk )− κ
2
vk then

21: ℓk+1 ← k + 1 ▷ Serious step

22: p̄ℓk+1 ← ProjX(pℓk+1 )

23: for m = 1, . . . ,M do
24: for s = 1, . . . , Sm do

25: g
ℓk+1,m
r,s ← η

(
π
ℓk+1,m
r,s + p̄

ℓk+1−p
ℓk+1

Sm

)
r = 1, . . . , R ▷ A subgradient

26: end for
27: end for
28: else
29: ℓk+1 ← ℓk ▷ Null step
30: end if

31: end while
32: return pℓk+1

Theorem 7 ( [45, Thm. 3.1]). Consider sequences {πk}k and {πℓk}k computed by Algorithm 3:

1. If only ℓ := ℓk serious steps are performed, then limk π
k = π̃ where π̃ solves the problem

min
π∈B

f(π)− [h(πℓ) + ⟨gℓ, π − πℓ⟩] + µ

2
∥π − πℓ∥2 , s.t. πm ∈ Πm ∀m = 1, . . . ,M. (3.13)

Moreover, if Penalty is large enough for Penalty
∑

m distΠm to be an exact penalty to problem (3.13), then
π̃ = πℓ solves the linkage problem (3.12).
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2. If Algorithm 3 performs infinitely many serious steps, then every cluster point of {πℓk}k solves the linkage
problem (3.12)

We highlight that the linkage problem (3.12) represents necessary optimality conditions to the penalized problem
(3.11), which is a model for the WB problem (3.5).

Remark 6. One of the conditions in Theorem 7 that ensures πℓ solves problem (3.12) is that the term Penalty
∑

m distΠm

acts as an exact penalty. This property is known to hold when the parameter Penalty is sufficiently large [36,
Prop. 9.1.1], although no explicit bound is known in our setting. Nevertheless, it is possible to detect, after many
iterations of the algorithm, when Penalty is not large enough to ensure exact penalization. This issue is discussed
in detail in [45, § 3.3].

Sparse barycenter for MNIST: Let us return to the second test problem of Subsection 3.3.3, i.e, the MNIST
dataset. As shown by Figure 3.7, Algorithm 2 fails to provide a satisfactory sparse WB when the nonconvex
constraint Xn is considered in (3.5). By considering the model (3.11) and applying Algorithm 3 to that test
problem we obtain the results depicted in Figure 3.8.

(a) Sparse WB for the number 3 with n = 45. (b) Sparse WB for the number 5 with n = 47.

Figure 3.8: Examples of two sparse WB computed with Algorithm 3.

Note that Figure 3.8 shows more satisfactory results than those displayed in Figure 3.7. However, Algorithm 3 is
significantly slower than Algorithm 2: Algorithm 3 performed 5000 iterations (for each example) in about thirty
minutes. Furthermore, the memory usage of Algorithm 3 is not as efficient as that of Algorithm 2. These two
drawbacks of Algorithm 3 should be addressed in future research.
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Chapter 4

The scenario tree reduction problem

This chapter builds on the research developed in the previous chapters to propose a practical scenario tree reduction
method that would enable the consideration of a large number of scenarios—by constructing a smaller tree that
faithfully represents them—thereby enhancing the robustness of multistage scenario-based optimization models.

Abstract Scenario tree reduction techniques are essential for achieving a balance between an accurate representa-
tion of uncertainties and computational complexity when solving multistage stochastic programming problems. In
the realm of available techniques, the Kovacevic and Pichler algorithm (Ann. Oper. Res., 2015 [70]) stands out for
employing the nested distance, a metric for comparing multistage scenario trees. However, dealing with large-scale
scenario trees can lead to a prohibitive computational burden due to the algorithm’s requirement of solving several
large-scale linear problems per iteration. This study concentrates on efficient approaches to solving such linear
problems, recognizing that their solutions are Wasserstein barycenters of the tree nodes’ probabilities on a given
stage. We leverage optimal transport techniques to compute Wasserstein barycenters and significantly improve the
computational performance of the Kovacevic and Pichler algorithm. Our boosted variants of this algorithm are
benchmarked on several multistage scenario trees. Our experiments show that compared to the original scenario
tree reduction algorithm, our variants can be eight times faster for reducing scenario trees with 8 stages, 78 125
scenarios, and 97 656 nodes.

The main content of Chapter 4 is under revision: Mimouni, Malisani, Zhu, de Oliveira, (2025) Scenario Tree
Reduction via Wasserstein Barycenters. Annals of Operations Research [86].

4.1 Litterature review

Stochastic optimization techniques have proved essential in solving optimization problems in the presence of uncer-
tainties driven by variables such as fluctuating prices, unpredictable demand, supply variations, resource availability,
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and scheduling intricacies. The notion of stochastic programming is pioneered by Dantzig [42], and applications can
be found in various sectors, including the financial industry [25, 54], supply chains [90], management science [29],
energy economics [5, 12], electrical markets [52], hydro-thermal power systems [46] and maintenance of units [100].

Multistage stochastic programming, a class of stochastic optimization, often relies on scenario trees to represent
the underlying stochastic process. In the quest for an accurate representation of uncertainties, large scenario trees
are required. However, as the number of scenarios increases, so does the complexity of the problem and the
computational effort regardless of the optimization method, whether it is based on scenario decomposition or stage
decomposition [13]. Hence, finding a balance between an accurate representation of uncertainties and numerical
tractability is of paramount importance in real-life applications modeled as multistage stochastic optimization
problems.

In 2003, the influential work [52] introduced scenario reduction techniques based on the minimization of the Wasser-
stein distance between two scenario trees, pioneering the forward reduction and backward selection methodologies.
Based on these ideas, [46] proposes to compute the Wasserstein distance at different nodes of a multistage scenario
tree to design a scenario tree reduction algorithm. Differently, [74] formulates the scenario reduction problem as a
mixed-integer linear programming problem. To decrease the computational effort when dealing with the Wasserstein
distance, which can be formulated as a linear programming (LP) problem for finite sample of scenarios, subsequent
works [69, 75] employ entropy-regularization schemes leveraged by the Sinkhorn–Knopp algorithm [115]. However,
being based on the Wasserstein distance, these techniques ignore the filtration (structure) of multistage scenario
trees. Neglecting the tree filtration potentially leads to deviations in solutions, because the solution of a multistage
stochastic optimization problem is non-anticipative. As an attempt to cope with this shortcoming, the work [66]
takes into consideration the so-called filtration distance, which relies on the tree structure. The stability results in
that paper are the basis for the scenario tree reduction approach proposed in [65], which is a Wasserstein-based
method that measures distances between nodes with the same parent, ultimately reducing pairs of nodes until
a stopping criterion is met. However, this method encounters computational challenges, as it relies on solving
NP-hard facility location problems. The work [31] proposes a scenario tree reduction algorithm that circumvents
this difficulty by clustering tree nodes based on a new filtration distance and computes an approximation of the
reduction problem. Scenario reduction strategies based on clustering are numerous in the literature, but often lack
stability properties; see, for instance, [67,128] and references therein.

A milestone in the field of scenario tree reduction was the introduction of the nested distance in [96], subsequently
studied in [97]. The nested distance, also called process distance, offers a valuable framework for comparing mul-
tistage scenario trees as it considers the underlying filtrations. Leveraging the nested distance to guide scenario
tree reduction enables control over the reduced tree’s statistical quality and its impact on the objective value of the
underlying multistage stochastic optimization problem. While it is relatively easy to calculate the nested distance
between two given trees [98], finding a tree (with given filtration) that minimizes the nested distance is a much
more challenging task. The reason is that the approximating tree’s probabilities and support (i.e., the scenarios
or outcomes) must be chosen to minimize the nested distance. This leads to a challenging optimization problem,
which is large-scale and nonconvex. To tackle such a problem, Kovacevic and Pichler [70] introduced an algorithm
that directly targets the minimization of the nested distance by alternating between probability and support opti-
mizations. While the last task has an explicit solution (should the Euclidean norm be employed as a metric in the
nested distance), optimizing the probabilities amounts to solving several large-scale LPs per stage. This represents
the main bottleneck of the scenario tree reduction algorithm of [98], which can be partially avoided in some special
cases. For instance, the work [12] provides a variant of the algorithm capable of handling large multistage scenario
trees provided the stochastic process is stage-wise independent, a strong assumption we do not assume in this work.
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Hence, for general stochastic processes, there is a clear need for more practical scenario tree reduction approaches
based on the nested distance. This work contributes in this direction by boosting the Kovacevic and Pichler (KP)
algorithm [98].

One of our contributions stems from recognizing that the algorithm’s most time-consuming task, the probability
optimization step, amounts to computing Wasserstein barycenters of the tree nodes’ probabilities. In addition, we
leverage optimal transport techniques to compute Wasserstein barycenters within the KP’s algorithm by employing
efficient and dedicated approaches such as the Iterative Bregmann Projection method (IBP) [15] and the Method of
Averaged Marginals (MAM) [85], to attractively boost the computational performance for reducing scenario trees.
As a third contribution, we benchmark our variants of the KP algorithm on real-life data and empirically show
that they significantly outperform the baseline KP algorithm for large-scale multistage scenario trees. Our findings
alleviate the algorithm’s bottleneck, helping thus to elevate the KP approach among the top algorithmic choices for
scenario tree reduction. We also emphasize the importance of the filtration initialization in the finding of a reduced
tree.

The remainder of this chapter is organized as follows. Section 4.2 presents the Kovacevic and Pichler’s approach
and recalls the mathematical background for the nested distance. The barycentric approaches are introduced in
Section 4.3, and the improved variant of the scenario tree reduction algorithm is developed. Some applications in
Section 4.4 compare the new approach with the original algorithm by Kovacevic and Pichler, concluding with a
speed-up method designed for real-life problems.

4.2 The Kovacevic and Pichler’s approach

In [96], Pflug introduced the Nested Distance (ND), which is built on the Wasserstein distance, exploiting its
structure and extending it to accommodate the specific characteristics of stochastic processes (see also [97]). It is
a tailor-made measure for stochastic processes: it inherits the foundational properties of the Wasserstein distance,
such as its sensitivity to local structure and robustness to outliers, while providing a more nuanced and specialized
measure for comparing the similarities between different realizations of stochastic processes.

4.2.1 Scenario trees and notations

A T-period scenario tree (N , A) is a discrete form of a random process – a family of random variables (see [70] for
more). Figure 4.1 illustrates the concept of scenario tree. It is composed of (a set of) nodes N and edges A.

A node m ∈ N is a direct predecessor or parent of the node n ∈ N , if (m,n) ∈ A, where (m,n) denotes the
edge between the nodes m and n. This relation is embodied by the notation m = n−. Reciprocally, n is a direct
successor (or child) of m and this set is denoted m+, such that n ∈ m+ if and only if m = n−. In the same vein,
we denote the predecessors (or ancestors) of n ∈ N as A(n), the set of nodes for which there exists a path to n:
for example m1 = m2− and m2 = n− (equivalently n ∈ m2+ and m2 ∈ m1+), then m1,m2 ∈ A(n). We consider
only trees with a single root, denoted by 0, i.e., 0− = ∅, but the methods developed here can be generalized for
multi-root trees (forests). Nodes nT ∈ N without successor nodes (i.e., nT+ = ∅) are called leaf nodes. For every
leaf node nT there is a sequence ξnT

:= (n0, . . . , nt, . . . , nT ) where n0 ∈ A(n1), n1 ∈ A(n2) etc, from the root to the
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Figure 4.1: Scenario tree notations.

leaf node nT composed by T + 1 nodes. Ft is the filtration generated by the sigma-algebra of the family (ξn)n∈Nt

and we define F := (Ft)t=1,...,T . The nodes bear a value named quantizer : ξ : N 7→ Ξ, we call ξ(n) the quantizer
of node n, where Ξ is a finite dimension metric space. We denote the probability, assigned to node n, by P (n),
that satisfies: P (n) =

∑
ñ∈n+ P (ñ) for n ∈ N and

∑
n∈NT

P (n) = 1. We denote conditional probability between

successors by P (n|m) = P (n)/P (m) for m = n−. Furthermore, using a distance d : Ξt+1 × Ξt+1 → R, we denote
the distance between two nodes n1, n2 at stage t, as

dn1,n2
:=

∑
n∈ξn1 ,n̄∈ξn2 ,n and n̄ at stage t

d̃(ξ(n), ξ(n̄)), (4.1)

where d̃ is a distance on Ξ.

4.2.2 Nested distance for trees

Using the tree notations introduced in Section 4.2.1, the process distance of order ι between two treesP :=(ΞT+1,F , P )
and P′ :=(ΞT+1,F ′, P ′) is the discrete Nested Distance for Trees (NDT). The transport mass between node i ∈ Nt

and node j ∈ N ′
t at stage t ∈ {1, . . . , T}, is noted πi,j or π(i, j).

Definition 8 (Nested Distance for Trees). For ι ∈ [1,∞), the process distance of order ι between P and P′ is the
ιth-root of the optimal value of the following LP:
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NDι(P,P′) :=



min
π

∑
i∈NT ,j∈N ′

T

π(i, j)dιi,j

s.t.
∑

{j:n∈A(j)} π(i, j|m,n) = P (i|m), (m ∈ A(i), n)∑
{i:m∈A(i)} π(i, j|m,n) = P ′(j|n), (n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1.

(NDT)

Note that (NDT) is a generalization of the Wasserstein distance. Indeed, the transport plan π does not only respect
the marginals imposed by P and P ′ but also respects the conditional marginals. These constraints embed the
filtration in the definition of the distance between trees. Note that in the following, the term ND is used to refer to
the value of (NDT).

This nuance is illustrated when deriving the W 2
2 or the ND2 between the trees of Figure 4.2 (we use the Euclidean

distance for d̃).

Figure 4.2: Three tree processes illustrating three different flows of information, taken from [95] and [70]. The
Wasserstein distance of the first two trees vanishes, while the nested distance does not.

To compute the Wasserstein distance between two trees, we treat the trees as two scenarios. Here,

T1 : ξ1T1
= (2, 2, 1), ξ2T1

= (2, 2, 3),

and

T2 : ξ1T2
= (2, 2− ε, 1), ξ2T2

= (2, 2 + ε, 3).

The squared Euclidean distance matrix between these scenarios is then(
ε2 ε2 + 4

ε2 + 4 ε2

)
.
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The minimization of eq. (2.8) obviously yields the following optimal transport plan:(
1− p 0
0 p

)
.

Therefore, we obtain
W2(T1, T2) = ε.

When ε→ 0, the Wasserstein distance vanishes, even though the trees remain structurally different.

Now, let us compute the nested distance between T1 and T2. The d-distance (see eq. (4.1)) between the roots is
zero, while at the middle stage it is given by (

ε2

ε2

)
,

and at the final stage by (
ε2 ε2 + 4

ε2 + 4 ε2

)
.

From (NDT), writing the constraints and using the conditional probabilities π(i, j) = π(i, j | m,n)π(m,n), we
obtain the transport plan at the middle stage: (

1− p
p

)
,

and at the final stage: (
(1− p)2 (1− p)p
(1− p)p p2

)
.

Therefore,
ND2(T1, T2) = 2ε2

(
1 + p(1− p)

)
+ 8p(1− p).

In contrast to the Wasserstein distance, here ND2 does not vanish when ε → 0; it accounts for the structural
difference between the two trees.

Similarly we can compute the distances for the other trees. We obtain W2(T1, T3) = 1 and W2(T2, T3) = 1−ε, which
means that, as ε → 0, the trees T2 and T3 become equidistant from T1 in the sense of the Wasserstein distance,
although they do not carry the same flow of information. This is not the case in the regard of the nested distance
which captures the impact of the filtration: ND2(T1, T3) = 2 + 10p(1− p), and ND2(T2, T3) = 2(1− ε)2.

4.2.3 The Kovacevic and Pichler algorithm for scenario tree reduction

The scenario tree reduction mechanism involves solving structure-like (NDT) problems, between the original tree
and the smaller one. The latter has given filtration (same number of stages but considerably fewer number of nodes
than the original tree), initialized probabilities and quantizer values.

The scenario reduction optimization problem is nonconvex, due to the optimization of both quantizers and proba-
bilities. The method in [70] operates a classical block coordinate optimization scheme. As illustrated in Figure 4.3,
after a filtration is chosen, the first step is the optimization of the probabilities P ′ for fixed quantizers, and the
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second step is the optimization of the quantizer values {ξ′(n) ∈ Ξ : n ∈ N ′} for fixed probability. The latter step
has an exact analytical solution in the Euclidean case, i.e. ι = 2, and when d̃ in (4.1) is the Euclidean norm [70].
The probability optimization is more difficult because it requires solving multiple (potentially large-scale) LPs. In
the remainder of this work, we will only develop the probability optimization; the quantizer optimization will only
be recalled briefly in Algorithm 5.

Figure 4.3: A general scheme of the Kovacevic and Pichler algorithm: to approximate a tree, a smaller tree with a
given filtration is improved in order to minimize the nested distance with the original tree. The probabilities and
the quantizers are alternatively optimized until convergence.

The probability optimization steps can be stated as follows: given the stochastic process quantizers {ξ′(n) ∈
Ξ : n ∈ N ′} and structure of (N ′, A′), we are looking for the optimal probability measure P ′ to approximate
P :=(ΞT+1,F , P ), regarding the nested distance. Inspecting formulation (NDT), it turns out that P ′ can be
computed by jointly optimizing with respect to πi,j and P ′(j|j−). This leads to the following large nonconvex
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optimization problem: 

min
π,P ′

∑
i∈NT ,j∈N ′

T

π(i, j)dιi,j

s.t.
∑

j∈n+ π(i, j|m,n) = P (i|m), (∀m ∈ A(i), n)∑
i∈m+ π(i, j|m,n) = P ′(j|n), (∀n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1

P ′(j|j−) ≥ 0.

(4.2)

This is a bilinear problem, hence difficult to handle: there is a large number of decision variables and bilinear
constraints (issued by the conditional probabilities in the second group of constraints, which involve the decision
variables composing π and P ′). Using the conditional probabilities π(i, j) = π(i, j|m,n) × π(m,n), we can derive
the recursive formula (4.3a) below.
Let δι(m,n) :=

∑
i∈m+,j∈n+ π(i, j|m,n)δι(i, j) for m ∈ Nt, n ∈ N ′

t , and δι(i, j) = dι(ξi, ξ
′
j)

ι =: dιi,j for the leaves i,
j of the trees. ∑

i∈NT ,j∈N ′
T

π(i, j)dιi,j =
∑

i∈NT ,j∈N ′
T

π(i, j)δι(i, j) (4.3a)

=
∑

i∈NT ,j∈N ′
T

∑
m∈i−,n∈j−

π(i, j|m,n)π(m,n)δι(i, j) (4.3b)

=
∑

n∈N ′
T−1

∑
m∈NT−1

π(m,n)
∑

i∈m+,j∈n+

π(i, j|m,n)δι(i, j)︸ ︷︷ ︸
δι(m,n)

(4.3c)

=
∑

n∈N ′
T−1

∑
m∈NT−1

π(m,n)δι(m,n). (4.3d)

Note also δι(0, 0) = ND(P,P′), recursively. Thanks to this recursive formula given in [70], the problem can be split
into recursive smaller problems for m ∈ Nt and n ∈ N ′

t : the conditional probability π(·, ·|m,n) is a solution to

min
π

∑
m∈Nt

π(m,n)
∑

i∈m+,j∈n+ π(i, j|m,n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m,n) = P (i|m), (i ∈ m+)∑
i∈m+ π(i, j|m,n) =

∑
i∈m̃+ π(i, j|m̃, n), (j ∈ n+ and m, m̃ ∈ Nt)

π(i, j|m,n) ≥ 0.

(RP)

This reformulation of the problem is still bilinear, however, to overcome this difficulty, [70] proposes to fix π(m,n)
with the values computed from the previous iteration (or initialized at first iteration) giving rise to a LP approx-
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imation. The authors have empirically shown that after few iterations of their algorithm the values assigned to
π(m,n) stabilize.

Despite this approximation, the problem is still challenging due to its huge dimensions. Thus, the method’s main
limitation is its computational burden that becomes prohibitive for large-scale scenario trees, as exemplified in
Section 4.4. The reason is that the method requires solving potentially large-scale LPs as in (RP) repeatedly. We
address the challenge by noticing that (RP) with fixed π(m,n) for m ∈ Nt for a given n is a Wassertein barycenter
problem (2.4), for which specialized and efficient algorithms exist (see for instance Chapter 2).

4.3 The probability optimization step is a Wasserstein barycenters
problem

We invite the reader to refer to Chapter 2 for definitions of the Wasserstein distance (WD) and Wasserstein
barycenters (2.4).

In what follows we present one of our contributions.

Proposition 5. The recursive problem (RP) with fixed π(m,n) for m ∈ Nt and a given n is a Wasserstein
Barycenter problem.

Proof. Let M empirical (discrete) measures νm having finite support sets:

supp(νm) := {ξ′m1 , . . . , ξ′mSm} and νm =

Sm∑
s=1

qms δξ′ms , (4.4)

with δu the Dirac unit mass on u ∈ Rd and qm ∈ ∆Sm , m = 1, . . . ,M .

A barycenter µ :=
∑R

r=1 prδξr with p ∈ ∆R of the family (νm)m∈[1,M ] is a solution to (2.4).

Problem (2.4) (Chapter 2) can be equivalently formulated as a LP, where πm for m = 1, . . . ,M denote the transport
plan between the µ and the probability measures, see Section 2 of [85]:
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

min
p,π

α1

R∑
r=1

S1∑
s=1

d1rsπ
1
rs + · · ·+ αM

R∑
r=1

SM∑
s=1

dMrsπ
M
rs

s.t.
∑R

r=1 π
1
rs = q1s , s = 1, . . . , S1

. . .
...∑R

r=1 π
M
rs = qMs , s = 1, . . . , SM

∑S1

s=1 π
1
rs = pr, r = 1, . . . , R

. . .
...∑SM

s=1 π
M
rs = pr, r = 1, . . . , R

p ∈ ∆R, π
1 ≥ 0 · · · πM ≥ 0,

(LP)

Let us now show that (RP) fits into this structure.
Let αn

mi
:= π(mi, n) for i = 1, . . . ,M , M = |Nt|, and (P ′(j|n))j∈n+ an auxiliary vector of probabilities allowing

to reformulate and couple the last group of constraints in (RP):
∑

i∈m+ π(i, j|m,n) = P ′(j|n) for j ∈ n+, for all
m = m1, . . . ,mM . Given t ∈ {1, . . . , T} and n ∈ N ′

t , problem (RP) reads as:

min
P ′,π

αn
1

∑
i∈m1+,j∈n+

π(i, j|m1, n)δι(i, j) + · · ·+ αn
M

∑
i∈mM+,j∈n+

π(i, j|mM , n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m1, n) = P (i|m1), (i ∈ m1+)

. . .
...∑

j∈n+ π(i, j|mM , n) = P (i|mM ), (i ∈ mM+)∑
i∈m1+

π(i, j|m1, n) = P ′(j|n), (j ∈ n+)
. . .

...∑
i∈mM+ π(i, j|mM , n) = P ′(j|n), (j ∈ n+)∑

j∈n+ P ′(j|n) = 1, π(i, j|m1, n) ≥ 0 · · · π(i, j|mM , n) ≥ 0,

(WB)

which is equivalent to

min
P ′(.|n)≥0

∑
m∈Nt

αn
mW ι

ι ((P
′(j|n))j∈n+, (P (i|m))i∈m+) s.t.

∑
j∈n+

P ′(j|n) = 1,

i.e., a Wasserstein Barycenter problem.

To further illustrate our interpretation of problem (RP) as a Wassertein Barycenter problem, see Figure 4.4. The
boxed subtree of the approximated (smaller) tree forms a probability measure with support (n7, n8) and probability
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(P (n7|n3), P (n8|n3)); the probabilities of this subtree helping to minimize the ND is a barycenter of the (original
tree’s) subtrees with initial nodes m3,m4,m5,m6. The Wasserstein Barycenter (P (n7|n3), P (n8|n3)) is computed
by solving (WB), the next (approximated tree’s) subtree, that is the one issued by node n4 is solved in the same
manner etc. The probability (P (n9|n4), P (n10|n4)) are computed by solving another barycenter problem, but with
different weights αn4

m (and costs) for m ∈ {m3,m4,m5,m6} (see eq. (4.4)).

Figure 4.4: (left) Original tree, (right) Approximated tree. The probabilities (P ′(n7|n3), P
′(n8|n3)) are computed

as the Wasserstein Barycenter of the set of (known) probabilities associated to the boxed subtrees on the left.

It is thus clear that several Wasserstein Barycenter problems must be solved at every iteration of the scenario tree
reduction algorithm [70]. The faster the computation of such barycenters, the faster the Kovacevic and Pichler’s
algorithm.

4.3.1 Wasserstein barycenters techniques for scenario reduction

Problem from (WB) is an LP and could, in principle, be solved by LP solvers such as Gurobi, Cplex, HiGHs, and
others. However, in real life applications of scenario tree reduction, problem (WB) (equivalently problem from
(RP)) can have huge dimensions and be intractable by LP solvers, thus hindering the whole scenario tree reduction
process. Many methods can be employed to tackle problem (WB) (for e.g. [15,38,131]). Note that these methods are
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typically employed to retrieve a barycentric probability measure. However, in the context of this work, we instead
focus on directly extracting the transport plans between the measures and the barycenter. We will further develop
these concepts in the following sections. In the remainder of this chapter, we use two different WB algorithms,
namely the Method of Averaged Marginals (MAM) [85] of Chapter 2 and the Iterative Bregmann Projection

algorithm (IBP) [15]. In the following, we simplify the notation by denoting: π(·, ·|mm̂, n) := πm̂ ∈ RR×Sm̂

for all
m̂ = 1, . . . ,M , since n is fixed in (WB), and P (·|m) is denoted by qm̂.

4.3.1.1 The Method of Averaged Marginals (MAM)

MAM’s main idea [85] is developed in Chapter 2 and its algorithm is detailed in Algorithm 1.

4.3.1.2 Computation of transport plans via regularized techniques

Utilizing efficient regularized methods enables us to quickly compute the transport plans required for the scenario
tree reduction approach. For example, the Iterative Bregman Projection (IBP) [15] is a state-of-the-art technique,
that applies regularization to the optimization problems presented in (WD) and (2.4).

Consider the entropic function:

E(π) :=
∑
r,s

πr,s(log(πr,s)− 1), (4.5)

with the convention 0 log(0) = 0. This is a strongly convex function which assures that E(π) ≥ 0 and E(π) = 0
if and only if π = 0. This function is employed to regularize the LP (WD), leading to the following nonlinear
optimization problem:

λW (µ, ν) := min
π∈U(µ,ν)

⟨D,π⟩+ 1

λ
E(π) (4.6a)

= min
π∈U(µ,ν)

1

λ

∑
r,s

(λDr,sπr,s + πr,s log(πr,s)− πr,s) (4.6b)

= min
π∈U(µ,ν)

1

λ
KL(π|K) (4.6c)

Note that KL is the Kullback-Leibler divergence between π,K ∈ RR×S and Kr,s > 0 for all (r, s): KL(π|K) :=∑
r,s

πr,s

(
log

(
πr,s

Kr,s

)
− 1

)
(the precise definition of matrix K is given in the algorithm below).

By noticing that p = π1R, problem (WB) with λW introduced in (4.6), instead of the classical Wasserstein distance,
writes:

min
πm ∈ U(µ, νm),
m = 1, . . . ,M

M∑
m=1

αm KL(πm|Km) (4.7)
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Since problem (4.7) is strongly convex, it has a unique optimal solution. Following [15], the optimal coupling
πm,m = 1, . . . ,M can be derived after iterative KL projections onto the right and left constraints, embodied by
the sets U(µ, νm),m = 1, . . . ,M .

Algorithm 4 IBP algorithm

Input: Given αm for m = 1, . . . ,M , λ > 0, initialize v0 and u0 with an arbitrary positive vector, for example 1S
Initialize p0, for example 1R/R
Set Dm ← αm (δι(i, j))(i,j)∈m+×n+ and set qm = (P (i|m))i∈m+

Define Km = e−λDm

for all m = 1, . . . ,M
while not converged do

▷ Projections onto the constraints
for m=1,. . . ,M do

vm,k+1 = qm

(Km)Tum,k

um,k+1 = pk+1

Kmvm,k+1

end for

▷ Approximation of the barycenter
pk+1 =

∏M
m=1(K

mvm,k+1)αm

end while

return πm = diag(um)Kmdiag(vm) for all m = 1, . . . ,M

Observe that all the algorithm’s steps consist of matrix-vector multiplication, and are thus simple to execute. Note
that pk+1 is the current estimate of the barycenter in Algorithm 4. The algorithm’s drawback is its accuracy, which
strongly depends on λ > 0. The greater is λ the closer is the solution of (4.7) to an exact solution of (WB).
However, if λ is too large, the values of K diverge, leading to computational issues such as double-precision overflow
errors.

4.3.2 Boosted Kovacevic and Pichler’s algorithm

We rely on the previous subsections about Wasserstein barycenters computation methods to provide the following
improved variant of the scenario tree reduction algorithm of [70]. In Algorithm 5, given a multistage scenario
tree represented by P = (ΞT+1,F , P ) a smaller scenario tree P′ = (ΞT+1,F ′, P ′) is constructed by updating the
quantizer values {ξ(n) ∈ Ξ : n ∈ N} and probability P ′, iteratively. The filtration F ′ is a data given to the
algorithm. In other words, the number of scenarios and the structure of the reduced tree is an input data, and the
algorithm seeks for the familly {ξ′(n) ∈ Ξ : n ∈ N ′} and P ′ that minimizes the nested distance between P and P′.

Some comments on Algorithm 5 are in order.

Initialization The probability P
′
and the scenario values {ξ′(n) ∈ Ξ : n ∈ N ′} will be updated by the algorithm

but the tree structure is fixed.
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Algorithm 5 Scenario tree reduction via nested distance and Wasserstein barycenters

▷ Step 0: input
1: Let the original T -stage scenario tree P = (ΞT+1,F , P ) and a smaller scenario tree P

′0 = (ΞT+1,F ′, P
′0) be

given.

2: Compute a transport probabilities π0(i, j) between scenarios (ξi)i∈NT
and

(
ξ
′0
j

)
j∈N ′

T

3: Set k ← 0 and choose a tolerance Tol > 0

4: for k = 1, 2, . . . do
▷ Step 1: Improve the scenario values (quantizers)

5: Set ξ
′k+1(nt) =

∑
m∈Nt

πk(m,nt)∑
i∈Nt

πk(i,nt)
ξt(m) for all nt ∈ N ′

t for t = 1, . . . , T

▷ Step 2: Improve the probabilities
6: Set δk+1

ι (i, j)← d(ξi, ξj)
ι for all i, j ∈ NT

7: for t = T − 1, . . . , 0 do ▷ Recursivity
8: for all n ∈ N ′

t do ▷ Wasserstein barycenters
9: Set αn

m ← πk(m,n), m ∈ Nt

10: Use IBP, or MAM to compute πk+1(·, ·|·, n) solving (WB)
11: Set δk+1

ι (m,n)←
∑

i∈m+,j∈n+ πk+1(i, j|m,n)δk+1
ι (i, j), m ∈ Nt

12: end for
13: end for

▷ Build πk+1 the unconditional transport plan matrix
14: Set πk+1(0, 0)← 1
15: for t=1,. . . ,T do
16: Compute πk+1(i, j) = πk+1(i, j|m,n)× πk+1(m,n) for i ∈ Nt, j ∈ N ′

t and m = i−, n = j−
17: end for

▷ Step 3: Stopping test
18: if δkι (0, 0)− δk+1

ι (0, 0) ≤ Tol then
19: Define P ′(nT ) =

∑
mT∈NT

πk+1(mT , nT ) for all nT ∈ N ′
T then P ′(n) =

∑
j∈n+ P ′(j) for all n ∈ N ′

t , t ̸= T

20: Set NDι(P,P′)← δk+1
ι (0, 0)

21: Stop and return with the reduced tree P
′
= (ΞT+1,F ′, P ′) and nested distance NDι(P,P′)

22: end if
23: end for

We will provide some initialization methods in Section 4.4.3.
Note that algorithm 5 is a straightforward operation since the initial transport plan only needs to respect the

marginal constraints, therefore π0(i, j) = P (i|m)
|n+| for all m,n, i ∈ m+, j ∈ n+ is a sufficient initialization.

Quantizer optimizations Algorithm 5 only considers the Euclidean case (ι = 2) in algorithm 5, but if ι ̸= 2,
the quantizer optimization step boils down to a gradient descent (see [70] for details) and the algorithm is still
applicable although slower.
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Hyperparameters IBP relies on the use of a parameter λ > 0 chosen by the user [15, 39]. Such parameter has
an impact on the result’s accuracy. The MAM algorithm also requires setting a parameter, but it only impacts the
convergence speed and can be determined with a sensitivity analysis [85].

Parallelization MAM is a parallelizable (and randomizable) algorithm, such a feature can also be leveraged in
Algorithm 5. Algorithm 5 can also be treated in a parallel manner.

Stopping criteria The given stopping criteria is a heuristic: the algorithm terminates when the improvement of
the nested distance between the two trees is below a certain level of tolerance Tol.

Convergence The algorithm leads to an improvement in each iteration. It should be kept in mind that the above
algorithm is nothing but a heuristic, as it is a block-coordinate scheme seeking to minimize the nested distance by
alternating minimization over scenarios and then with respect to probabilities.

4.4 Applications

This section illustrates the performance of Algorithm 5 and its behaviour when using different solvers to compute
Wasserstein barycenters (i.e. solutions of (RP) and (WB)). All the following applications employ Algorithm 5 in
the Euclidean case, though similar conclusions can be extended to other values of ι. If a standard LP solver is
employed, then Algorithm 5 boils down to the setting of [70]. We ensure that the considered solvers attain the
same level of precision when tackling the Wasserstein barycenter problems at Step 2 of Algorithm 5. Numerical
experiments were conducted using 20 cores (Intel(R) Xeon(R) Gold 5120 CPU ) and Python 3.9, using a MPI
based parallelization when possible. The test problems and solvers’ codes are available for download at the link
https://github.com/dan-mim/Nested_tree_reduction [83].

4.4.1 Impact of the tree size

In what follows, we consider scenarios trees composed by 4 to 8 stages and 5 to 6 children per nodes, offering num-
bers of scenarios and spanning from hundreds to ten thousands nodes (see Table 4.1 for details). The quantizers
of both trees are set randomly within the range [−10, 10]. In our preliminary tests, the reduced tree is always binary.

We consider the following variants of the algorithm, by varying the solver used to compute the Wasserstein Barycen-
ter in Step 2 of Algorithm 5:

• LP : Algorithm 5 employing the LP solver HiGHS;

• MAM : Algorithm 5 employing the Method of Averaged Marginals [85];
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• IBP : Algorithm 5 employing IBP, inspired from the code of G. Peyré [92]. This algorithm relies on the tune
of an hyperparameter that has been preset to guarantee its best efficiency and convergence.

All variants use Tol = 0.1 as a tolerance for the stopping test. It has been empirically verified that results do not
improve significantly if we decrease this tolerance further.

Figure 4.5: Evolution of the Nested Distance along the reduction iterations for different initial tree sizes. The final
reduced tree has always two children per node.

Figure 4.5 shows that the exact ND between the original tree and the approximate one, iteratively decreases, no
matter the variant of Algorithm 5. All variants are initialized with the same tree, generated randomly (probabilities
and scenarios). Note that the initial ND is always at least halved after the reduction. This emphasizes how important
is the use of a reduction method. Within this scale, one can see that every variant converges to approximately
the same precision, although not necessarily to the same reduced scenario tree (because different solvers compute
different optimal transportation plans, impacting the construction of scenarios composing the reduced tree).

Even though the ND decreases with all variants, it seems faster (in terms of number of iterations) when using LP or
MAM. Figure 4.6 shows that the IBP algorithm tends to reach a less precise plateau. This is due to the core of the
IBP method, which is an inexact algorithm. MAM being an exact algorithm for solving (WB), it naturally follows
the lead of LP. The slight differences between the variants LP and MAM can be explained by the fact that the
general problem is nonconvex and different optimal transportation plans computed by different solvers can lead to
different optimization paths that result in different reduced scenario trees. Therefore, depending on the employed
solvers and the initialization, the approximated trees could be different while still having close ND with the original
tree.
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Figure 4.6: Evolution of the Nested Distance along the reduction iterations for different initial tree sizes with a
zoom.

Table 4.1 shows that for small initial trees, up to 7776 scenarios, the LP variant is very efficient: it provides the
lowest ND solution in the shortest time. But from 15625 scenarios and more, IBP is faster. As the number of
scenarios increases, the relative performances of MAM get better and, in our case with more than 46656 scenarios,
MAM is eventually twice faster than LP while reaching the same precision as depicted in Figure 4.5. As shown in
the last graph, with even more nodes and scenarios (78125 and 97656, respectively), MAM is the fastest variant.
Note that IBP is a very robust method: not only is the precision reached more than reasonable, according to
Figure 4.5, but the total time of execution is always in the ballpark of the fastest execution time of all algorithms.
Leveraging that MAM is parallelizable, we ran results using 4 processors. We witnessed that in this configuration,
the variant MAM is the most advantageous one when the initial tree has more than 20000 scenarios by far.

4.4.2 Impact of the tree structure

We observed when using the different approaches to tackle real-life examples that the structure of the initial large
tree has an impact on the convergence speed. Real-life trees do not span homogeneously from the root to the
last stage, and when heterogeneity occurs, switching from one method to another can make the global reduction
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Scenarios Nodes LP IBP MAM MAM 4 processors
216 259 0.17 0.49 2.21 0.56
1296 1555 1.54 14.83 18.23 6.28
7776 9331 74.25 161.19 344.83 124.44
15625 19531 487.58 323.76 816.46 341.62
46656 55987 4905 2136 2541 1256
78125 97656 13797 4334 3458 1635

Table 4.1: Total time (in seconds) per method for the studied trees.

algorithm significantly faster.

Figure 4.7: Influence of the tree structure on the computation time of a stage, depending on the method in use:
MAM in green and LP in orange.

Figure 4.7 illustrates the tree structure influence on the computation time of a stage, depending on the algorithm
used. The original large tree is built as follows: from the root, two nodes are spanning (stage t = 2), then stage
t = 3 counts n nodes. From this configuration, we made the number |n + | of children from these n nodes vary
from 1 to 600 children (stage t = T = 4). To put it differently, we built a tree with n subtrees at stage 3 having
dimension |n + |. We reduce this tree into a binary one and evaluate stage 3 reduction time1. We recall that the
most expensive step of the algorithm consists in solving the greatest number of (WB) problems, thus stage 3.

For any number n of subtrees, the LP solver is always better when |n+ | is low, but when increasing |n+ | MAM
solver ends up being faster because it treats better larger problems. This discrepancy gains momentum when the

1The computation time is evaluated as the mean of the five iterations along the reduction - at stage 3
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Figure 4.8: Influence of the tree structure on the computation time for small n.

number of subtrees rises. It is observed that the treshold is reached even faster when n is large. Therefore, at a
stage with n > 10 (and |n+ | > 1) where the reduction can take more than 4s we would advise to always use MAM.
But, as illustrated in Figure 4.8, for smaller n we would have a closer look, and use MAM only if |n + | > 150,
otherwise keep the LP method. Figure 4.7 and Figure 4.8 show that choosing the adequate method to tackle the
reduction can speed up the computation time from 20% to 35%. In practice, it can be observed that this repartition
ends up using half MAM (mostly for the deep stages where t≫ 0) and half LP (mostly for the stages close to the
root and the heterogeneity in the structure) to reduce a real-life initial tree.

The IBP method is challenging to use in practice within the tree reduction algorithm because of the complexity
involved in tuning the hyperparameter λ, which ideally needs to be carefully chosen for each barycenter computation
to achieve acceptable precision. Fine-tuning is necessary to control its accuracy. If a broadly set hyperparameter λ
is used, the algorithm may either encounter double-precision overflow errors at certain stages or compute a solution
that significantly deviates from the exact optimization, without any guarantee or control over the resulting precision.

Figure 4.9 presents a study on the influence of a broad λ used for IBP in the tree reduction algorithm for the same
datasets as earlier. It shows that the use of IBP enables the reduction tree algorithm to be fast for both small
and large n and n+, and stresses that the smaller the λ the faster the reduction. But Figure 4.10 underlines that
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(a) n = 8 (b) n = 12

Figure 4.9: Speed comparison with IBP for different λ: A positive time difference means the method is faster than
LP. Each curve is obtained by averaging the ND accuracy over n ∈ {2, 4, 6, 8, 10, 12, 14, 16}.

Figure 4.10: Average influence of λ in the precision. Each curve is obtained by averaging the ND accuracy over
n ∈ {2, 4, 6, 8, 10, 12, 14, 16}.

this speed comes with a cost since the smaller the λ and the less accurate the computation of the barycenter - the
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Table 4.2: Comparison of the ND to the original tree before and after tree reduction using different initialization
techniques.

greater the ND. Figure 4.10 has been obtained by averaging the ND accuracy over n 2, where the case λ = 100 is
taken as reference.

4.4.3 Impact of the initialization

In this section, we incorporate the reduction tree algorithm (utilizing either MAM or LP, depending on the results
from Section 4.4.2) into a stochastic optimization pipeline. Data were collected from an industrial site in Solaize,
France, where battery production and local consumption have been monitored over several years. Using this data,
we generated scenarios for battery consumption and production throughout a single day, divided into 48 time steps,
employing the methodology outlined in [4]. This approach allows us to create 100 2D scenarios, each consisting of
48 stages with scenario values spanning from 0 to 25kW for the consumption and 0 to 40kW for the production.
These scenarios can be modeled as a large tree. We reduce this tree using various initial filtrations to construct a
smaller, approximate tree. To built these filtrations we leverage two scenario selection algorithms:

• Kmeans method, starting from 100 scenarios it creates 25 clusters using the Euclidean norm, and then computes
the 25 corresponding barycenters;

• Fast Forward Selection (FFS) method, introduced by Heitsch and Römisch in [64]. The method iteratively
selects scenarios that minimize the Wasserstein distance to the remaining scenarios. At each step, the scenario
that best approximates the distribution is added to the reduced set until the desired number of 25 scenarios
is reached, ensuring an efficient yet effective reduction.

From these reduced number of scenarios we generate the associated trees. They will initialize Algorithm 5. We
make the experience multiple times by generating several sets of scenarios.

2n ∈ {2, 4, 6, 8, 10, 12, 14, 16}.
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Table 4.2 compares the ND to the original large tree, both before and after tree reduction, highlighting the im-
portance of the initial filtration. Note that the ND is consistently reduced after the tree reduction algorithm, as
expected. When FFS is used to generate the initial filtration, the reduced approximated tree remains consistently
closer to the original tree in terms of nested distance, even if the ND between the original tree and the FFS filtration
is larger than that between the original tree and the K-means filtration at initialization. This is because FFS is a
specialized algorithm designed to minimize the Wasserstein distance between the selected scenarios and the original
ones, thereby preserving the maximum amount of information from the initial processes.
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Chapter 5

Solving EMS problems

This chapter implements and compares different control strategies for real-world Energy Management System (EMS)
problems, leveraging the previously developed methods to ensure fidelity to real-world conditions.

Abstract In this chapter, we consider a stationary battery using ground truth measurements of electricity con-
sumption and production from a predominantly commercial building in France. This work is motivated by the fact
that, on the one hand, classical approaches such as MPC, which deal with uncertainties by computing deterministic
solutions in a receding horizon fashion, can lead to suboptimal economic performance; on the other hand, risk-free
multi-stage stochastic programming lacks robustness when reality deviates from forecast. To achieve a good trade-
off between robustness and performance, we explore and compare other control models including robust stochastic
optimization models and Reinforcement Learning strategies. Through numerical experiments, we evaluate these
models in terms of cost efficiency, computational scalability, and out-of-sample robustness, offering a comprehensive
comparison and insights into their practical interest for real-world EMS problems.

5.1 Litterature review

Energy Management Systems (EMS) play a central role in optimizing electricity consumption, and reducing opera-
tional costs in modern power networks. However, managing energy efficiently requires making sequential decisions
under uncertainty: the future is not fully known when decisions must be made. Traditionally, such problems are
addressed using stochastic programming models, which aim to minimize expected costs by simulating a wide range
of future scenarios. These models assume that the probability distribution of future data is known in advance.
Although reasonable, this assumption is not always satisfied in practice, and the true distribution sometimes has
to be estimated from limited historical data, which may affect the reliability of the results derived from it.

To overcome this limitation, practitioners often rely on Model Predictive Control (MPC) [58,71,88], a control model
that solves a deterministic optimization problem at each stage using the most recent data and a single scenario for
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predicting the unknown variables. While MPC is simple to implement and widely adopted in industry, it does not
explicitly account for future uncertainties and may result in suboptimal performance [55].

Another strategy is Robust Optimization (RO) [55, 116], which discards the need for probabilities altogether.
Instead, it assumes the worst-case scenario among all the possible outcomes. This approach yields conservative
solutions, which are often too costly or overly cautious for practical use [59].

A more balanced approach, known as Distributionally Robust Optimization (DRO), considers distributions lying
within an ambiguity set – a set of plausible probability distributions constructed from a finite collection of scenarios.
The goal is to optimize decisions to perform well against the worst-case distribution in this set. In fact, rather
than relying on a single estimated probability measure, DRO acknowledges the uncertainty in this estimation and
instead considers all distributions that lie within a certain neighborhood of the empirical measure. The quality
of the DRO solution strongly depends on how this ambiguity set is defined as it captures the trade-off between
robustness and reliance on a specific distribution. Among distributionally robust approaches, recent works have
focused on the use of Wasserstein distance [51, 72] to define ambiguity sets. While the Wasserstein distance offers
attractive mathematical properties, allowing for models to be both robust, its application to multistage problems
raises nontrivial challenges [44,110].

The recent work [80], situated within the field of risk-averse stochastic optimization, introduces a novel approach
that integrates variance penalization directly into multistage SP models. By accounting for cost variability across
scenarios, the approach effectively balances robustness and performance.

A key challenge shared by most of the optimization-based approaches discussed so far is their reliance on scenario
generation. While increasing the number of scenarios can enhance solution accuracy, it also leads to substantial
computational overhead. Although scenario selection and tree reduction techniques offer partial remedies [12, 64,
70,86], they do not eliminate the fundamental dependency on pre-specified scenario sets.

An alternative to optimization-based models is Reinforcement Learning (RL), which learns decision policies directly
from data through interaction with the environment [24, 32, 127]. RL avoids the need to specify probability dis-
tributions or generate accurate scenarios. Instead, it learns from repeated experience to make sequential decisions
under uncertainty. Although promising, RL often requires a large amount of data and may struggle with constraints
typically present in EMS problems [73].

This chapter systematically compares several approaches, including MPC, (risk-free and risk-averse) stochastic
programming models, robust optimization, distributionally robust models, and reinforcement learning for a specific
EMS application. We evaluate each approach in terms of robustness, computational efficiency, and out-of-sample
performance, providing guidance on their practical use in real-world energy systems.

The remainder of this chapter is structured as follows. Section 5.2 provides the notations that will be used in this
chapter. Section 5.3 introduces the EMS problem we study and provides the mathematical background for the
models discussed previously. Section 5.4 presents the computational methods, along with the specific algorithmic
parametrizations tailored to address the EMS problem. Finally, Section 5.5 reports numerical results, comparing
the different approaches after performing cross-validation to ensure each method is tuned for the best performance
on the EMS task.
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5.2 Notation

Let X be a Hilbert space, we denote by ⟨., .⟩X its inner product, and by ∥.∥X its corresponding norm.

Let E ⊂ X be convex, we denote iE : X 7→ R ∪ {+∞} the indicator function of E, i.e. iE(x) = 0 if x ∈ E and
iE(x) = +∞ otherwise.

Additionally we denote 1E : X 7→ {0, 1} the characteristic function of E, i.e. 1E(x) = 1 if x ∈ E and 1E(x) = 0
otherwise .

Given a Fréchet-differentiable function f : X 7→ R we denote f ′ ∈ X the Fréchet-derivative of f .

Let (Ω,F , P ) be a probability space, we denote random variables from Ω to X using bold characters such as
ξ : Ω 7→ X. If Ω is a discrete set, i.e. Ω = {ω1, . . . , ωS} we denote indifferently ξ(s) or ξs the outcome ξ(ωs) of the
random variable.

We denote with blackboard capital letters sets of random variable such as X := {x : Ω 7→ X}. We denote EP the
mathematical expectation with respect to the probability measure P .

The random Hilbert space X is endowed with the inner product ⟨., .⟩X := E (⟨., .⟩X), when this quantity is finite,
and the corresponding norm ∥.∥X := E(∥.∥X).

Given p ∈ [1,+∞], we denote Lp(A;B) (or Lp) the Lebesgue spaces of functions from A to B and we denote ∥.∥Lp

the corresponding p-norm.

For all 1 ≤ p < +∞, we denote Lp the space of random variables ξ : Ω 7→ Lp and we denote ∥ξ∥Lp := E(∥ξ∥pLp)
1
p .

We denote L∞ the space of random variables ξ : Ω 7→ L∞ and we denote ∥ξ∥L∞ := inf{y ∈ R : µ({ω ∈ Ω :
∥ξ(ω)∥L∞ > y}) = 0}.

Let X be a set, and let x ∈ X, we denote δx the Dirac delta function on x. Finally, let x ∈ Rn, we denote xk the
kth coordinate of x and let M ∈ Rn×m, we denote Mk,l the value of the kth row and lth column of M .

5.3 Problem statement

We consider a Stochastic Optimal Control Problem (SOCP) modeling the operation of a stationary battery con-
nected downstream of a prosumer’s electricity meter. A prosumer is an end-user which both consumes and produces
electricity, typically via intermittent sources such as photovoltaic panels, as depicted in Figure 5.1. Often the goal
is to minimize the expected electricity cost over a finite time horizon, while accounting for battery dynamics and
the stochastic nature of both consumption and production.
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Figure 5.1: Schematic diagram of a domestic system with a stationary battery controlled by an EMS [80]

The EMS battery strategy Let Pb, Cons, and PV be respectively the battery’s charging power, the electric
consumption and photovoltaic power both measured at the meter. The electricity bill to minimize, as a function of
these variables, writes

Jt1:t2(Pb,Cons,PV) :=

∫ t2

t1

pcr(t)max{Pm(t), 0}+ pdr(t)min{Pm(t), 0}dt (5.1)

where pcr(t) [e/kWh] (resp. pdr(t)) is the buying (resp. selling) prices of electricity at time t. They satisfy 0 ≤
pdr(t) ≤ pcr(t) at all times, therefore eq. (5.1) is convex. The power measured at the meter, Pm [kW] writes

Pm(t) := Cons(t)−PV(t) +
1

ρc
max{Pb(t), 0}+ ρd min{Pb(t), 0}, (5.2)

The parameters ρc = 0.97, and ρd = 0.97 represent the battery charge and discharge efficiencies, respectively. Now,
the battery’s dynamics are governed by

Ė(t) = Pb(t), (5.3)

and the operational constraints of the battery’s charging / discharging process are

E ∈ L∞([t1, t2]; [0, 13 kWh]), (5.4a)

Pb ∈ L2([t1, t2]; [−8, 8ρc kW]), (5.4b)

E(t1) = E(t2) = E0. (5.4c)

In this formulation, E(t) [kWh] represents the battery’s State of Energy (SoE) at time t, while E0 denotes the initial
and terminal state of energy, ensuring periodicity over the time horizon. The interactions between the sources of
power are depicted in the diagram of Figure 5.1. For the sake of readability, we denote C the set of admissible
deterministic charging powers defined as follows

C :=
{
Pb ∈ L2 : eqs. (5.3) and (5.4) hold

}
. (5.5)

84



D. Mimouni

5.4 Computing solutions for different strategies

In this work, we are interested in exploring different optimization models for our EMS problem taking in account
uncertainties on consumption and (photovoltaic) production. We start by describing a standard model predictive
control formulation.

5.4.1 Model predictive control

At each time step t, MPC algorithms [58,71,88] consist of predicting a realization of the random variables Cons and

PV, respectively denoted Ĉons and P̂V, on a defined and finite horizon ∆T , and solve the following deterministic
optimization problem:

min
Pb∈C

Jt:t+∆T (Pb, Ĉons, P̂V), (MPC)

and then apply Pb(t). Note that, in the MPC framework, the charging battery power (Pb) and the energy in

the battery (E), are not random variables since they only depend on the predicted scenario Ĉons, P̂V which is
deterministic. This MPC strategy is a rolling horizon method of actualization horizon h < ∆T . This method is easy
to implement and relies on deterministic optimization algorithms. However, the solutions can be far from optimal

depending on the accuracy of the single predicted scenario (Ĉons, P̂V).

5.4.2 Scenario-based methods

5.4.2.1 Mathematical framework

The control methods presented in this section all rely on a finite set of scenarios drawn from a given probability
distribution. In the following we denote Ξt1:t2 the discrete set of scenarios defined as follows

ΞS
t1:t2 :=

{
Conss − PVs ∈ L2([t1, t2];R) : s = 1, . . . , S

}
. (5.6)

With each scenario, Conss − PVs, is associated with a probability ps > 0, satisfying
∑S

s=1 ps = 1. For notation
simplicity, we denote ξs := Conss−PVs. Scenario based methods consist in computing an optimal control for each
scenario ξs ∈ Ξt1:t2 , that is to say, S charging/discharging chronicles, denoted P s

b . However, these S optimal controls

are not independent as they must satisfy a ∆-non-anticipative constraint: If s ̸= s′ are such that ξs(t) = ξs
′
(t), for

all t ≤ τ , then necessarily P s
b (t) = P s′

b (t), for all t ≤ τ +∆. This ∆-non-anticipativity constraint allows for taking
into account the measurement delays. Indeed, consumption at time t, Cons(t) is the mean power consumption on
the time interval [t, t+∆] and therefore is only measured at time t+∆. Thus, the battery power Pb on [t, t+∆]
must be computed without knowledge of the consumption nor the PV production on this time interval hence the
∆-non-anticipativity constraint. Throughout the chapter, we denote N∆ the set of ∆-non-anticipative controls.
Mathematical details on scenario-based methods can be found in [28,103,111].

Therefore, the corresponding set of admissible random charging powers, associated with set C and accounting for
non-anticipativity, is

C := {Pb ∈ N∆ : Pb ∈ C almost surely} . (5.7)
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5.4.2.2 Deterministic-control approach for SP

The deterministic-control approach to stochastic programming (SP) models involves computing a single control
policy that minimizes the expected electricity bill across all scenarios. This contrasts with standard SP models,
which seek a scenario-dependent, non-anticipative control P s

b , for s = 1, . . . , S. The deterministic control approach
is workable due to the problem’s structure: the set of solutions does not depend on uncertainty.

Definition 9 (Deterministic-Control Approach for SP (DSP)). The DSP problem is defined as

inf
Pb∈C

[
S∑

s=1

psJt1:t2(Pb,Cons
s,PVs)

]
, (DSP)

where Conss − PVs ∈ ΞS
t1:t2 is the s-th scenario.

Definition 9 fits a standard setting of constrained optimal control problem and can be solved using numerical
methods such as [79]. This model’s main advantage is that it remains numerically tractable even when using a large
number of scenarios. This method is highly robust but can be sub-optimal.

5.4.2.3 Stochastic programming with variance penalization

The stochastic programming with variance penalization consists of solving the following optimal control problem,
parameterized with the parameter α ≥ 0

Definition 10 (SP with variance penalization). The SP model with variance penalization consists in solving for
Pb the following optimal control problem

inf
Pb∈C

[ S∑
s=1

psJt1:t2(Pb(s),Cons
s,PVs) +

α

2

S∑
s=1

ps∥Pb(s)−
S∑

s′=1

ps′Pb(s
′)∥2L2

]
, (VSP)

where Pb is the discrete random variable associating with each scenario s the optimal charging power Pb(s) := P s
b ,

and where Conss − PVs ∈ ΞS
t1:t2 .

For α = 0, Definition 10 reduces to the standard risk-neutral optimal control problem [103]. For α = +∞, the
problem consists of finding a deterministic battery’s charging/discharging power that minimizes the electricity
bill’s expectation, i.e., (VSP) boils down to (DSP). For α ∈ (0,+∞), Definition 10 balances the risk-neutral
and Definition 9. The solving algorithm, presented in [80], for Definition 10 is displayed in Algorithm 6 below.
We highlight that Step 1 of this algorithm is the only computationally intensive step and consists of solving S
independent deterministic optimal control problems. Efficient algorithms such as [26,79] are available for this task.

Let Λ(s, t) :=
{
j ∈ {1, . . . , S}

∣∣ ξjl = ξsl ,∀l ≤ t −∆
}
be the set of scenarios sharing the same history as scenario s

up to stage t.
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Algorithm 6 Regularized Progressive Hedging Algorithm (RPHA)

1: Initialization: Set z0 ∈ L2, λ0 ∈ N⊥
∆ , r > 0, tolerance Tol > 0, k ← 0 and success← False

2: while not success do
▷ Step 1: Solve for each scenarios indexed by s

3:

Pb
k+1(s) ← arg min

Pb∈C

{
Jt1:t2(Pb,Cons

s,PVs) + ⟨λk(s), Pb⟩L2 +
r

2
∥Pb − zk(s)∥2L2 , s = 1, . . . , S

}
▷ Step 2: Project onto the orthogonal non-anticipative space

4: λk+1 ← λk + rProjN⊥
∆
(Pb

k+1)
▷ Step 3: Update the dual variables

5: zk+1 ← zk − Pb
k+1 + α

r+α

∑
s ps

(
2Pb

k+1(s)− zk(s)
)
+ r

r+αProjN∆

(
2Pb

k+1 − zk
)

▷ Step 4: Check convergence
6: success← ∥Pb

k+1 − Pb
k∥L2 < Tol

7: end while

Then, for z ∈ L2, the projection x = ProjN∆
(z) is given component-wise by

xt(s) =
1∑

j∈Λ(s,t) pj

∑
j∈Λ(s,t)

pjzt(j), t = 1, . . . , T, s = 1, . . . , S. (5.8)

In words, for each stage t and scenario s, zt(s) is replaced by the average over all scenarios that share the same
history up to t. The projection onto the orthogonal set is

ProjN⊥
∆
(z) = z − ProjN∆

(z). (5.9)

5.4.2.4 Distributionally Robust Optimization (DRO)

In this setting, we use two fixed sets of scenarios, denoted ΞS and ΞL of respective size S and L with L ≥ S.
Each scenario ξl := Consl − PVl ∈ ΞL is associated with a probability pl. The DRO setting consists of solving the
following problem:

Definition 11 (Distributionnaly Robust Problem).

inf
Pb∈C

sup
q∈Pθ

[
S∑

s=1

qsJ(Pb(s),Cons
s,PVs)

]
, (DRO)

where Pθ is the ambiguity set defined as follows

Pθ :=

{
q ∈ RS

+ :
∑
s

qs = 1,W2

(
S∑

s=1

qsδξs ,

L∑
l=1

plδξl

)
≤ θ

}
. (5.10)
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Here W2 is the 2-Wasserstein distance between two discrete probability measures [106, Ch. 5] and Chapter 2. The
parameter θ controls the size of the ambiguity set. The larger θ is, the larger the ambiguity set becomes. Thus,
large values of θ lead to a worst-case type behavior by assigning all probabilities qs except one to zero, which is
equivalent to selecting the worst scenario over ΞS as in RO. Conversely, when θ is small, the ambiguity set is also
small, and the weights qs are adjusted so that the probability defined over ΞS is close to that defined over ΞL,
approaching a risk-neutral problem.
Before describing an algorithm to solve (DRO), we need to introduce two mathematical operations, the projection
onto the ambiguity set Pθ from eq. (5.10) and the projection onto the epigraph of the optimal control function
described in eqs. (5.1), (5.3) and (5.4).

Definition 12 (Projection onto the ambiguity set Pθ). Let p ∈ RS, let ξ ∈ ΞS and ξ̂ ∈ ΞL, we denote the projection
of p onto Pθ

ProjPθ
(p) := x̄ (5.11)

where x̄ is defined as follows

(x̄, η̄) ∈ argmin
x∈RS

+,η∈RS×L
+

∥x− p∥2 (5.12)

such that

S∑
s=1

L∑
l=1

ηs,l∥ξs − ξ̂l∥2L2 ≤ θ (5.13a)

S∑
s=1

ηs,l = pl, l = 1, . . . , L (5.13b)

L∑
l=1

ηs,l = xs, s = 1, . . . , S (5.13c)

S∑
s=1

L∑
l=1

ηs,l = 1. (5.13d)

Thus, the projection onto the ambiguity set is a quadratic problem of size S(1 + L), therefore, computationally
intensive depending on S and L.

Definition 13 (Projection onto the epigraph). First, let us consider the following deterministic optimal control
problem

J̄s
t1:t2(Pb) := Jt1:t2(Pb,Cons

s,PVs) + iC(Pb)

where C is defined in eq. (5.5). Let (Pb, ρ) ∈ L2 × R, we denote Projepi J̄s
t1:t2

(Pb, ρ) the corresponding projection

onto the epigraph of J̄s
t1:t2 defined as the solution of the following optimal control problem

Projepi J̄s
t1:t2

(Pb, ρ) ∈ argmin
P∈L2,λ∈R

∥P − Pb∥2L2 + (ρ− λ)2 (5.14)

88



D. Mimouni

under the following constraints

Ė(t) = P (t) (5.15a)

Q̇(t) = pcr(t)max{Pm(t), 0}+ pdr(t)min{Pm(t), 0} (5.15b)

Pm(t) = Conss(t)− PVs(t) +
1

ρc
max{P (t), 0}+ ρd min{P (t), 0} (5.15c)

Q(t1) = 0 (5.15d)

Q(t2)− λ ≤ 0 (5.15e)

E(t1) = E(t2) = E0. (5.15f)

This is a standard deterministic optimal control problem and can be efficiently solved numerically.

We are now ready to detail the solving algorithm for problem (DRO) which is a direct adaptation of [44] to the
problem at hand. The second step of Algorithm 7, i.e. the projection onto the ambiguity set, is the bottleneck of
the algorithm. Indeed, the complexity of this task dramatically increases with the sizes of the scenarios sets. On
the other hand, the projection onto the epigraphs performed at Step 3 is parallelizable with respect to the scenarios,
and each individual task is a standard, easy-to-solve optimal control problem.

Algorithm 7 Scenario Decomposition with Alternating Projections - SDAP [44]

1: Initialization: Set z0
Pb
∈ L2, z0u ∈ RS , z0v ∈ RS , r > 0, two tolerances TolPb

,TolJ > 0, set k ← 0, and
converged← False

2: while not converged do
▷ Step 1: Projection onto N∆

3: Define Pb
k ← ProjN∆

(zk
Pb
), uk ← zk

u+zk
v

2
▷ Step 2: Projection on Pθ:

4: v̂k+1 ← (2uk − zkv )− 1
rProjPθ

(
r(2uk − zkv )

)
▷ Step 3: Projection onto the epigraphs

5: for s = 1, . . . , S do

6: (P̂b
k+1

(s), ûk+1
s )← Projepi J̄s

t1:t2

(
2Pb

k(s)− zk
Pb
(s), 2uk

s − zkus

)
7: end for

▷ Step 4:

8: zPb
← zk

x + P̂b
k+1
− Pb

k

9: zk+1
u ← zku + ûk+1 − uk

10: zk+1
v ← zkv + v̂k+1 − uk

▷ Step 5: Check Convergence

11: converged← ∥P̂b
k+1
− Pb

k∥ < TolPb
and∥ûk+1 − uk∥ ≤ TolJ and∥v̂k+1 − uk∥ ≤ TolJ k ← k + 1

12: end while

5.4.3 Reinforcement learning

In reinforcement learning (RL), an agent learns an optimal behavior by interacting with an environment and
receiving costs (or rewards) from these interactions. To solve the EMS problem, we will use a tabular Q-learning
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algorithm inspired by [127]. We define a finite horizon Markov Decision Process (MDP) as (T ,S,A,P, c), where T =
{t1, t1+∆, . . . , t2} represents the finite time horizon, S is the state space, A is the action space, P : S×A×S → [0, 1],
P(s′|s, a) is the transition probability of passing from state s to state s′ given action a, and c is the cost function
representing the cost received after taking action a in state s. We choose the state to be s := (E, ξ̄) ∈ S, where:

• E ∈ {0, 0.13, · · · , 13 kWh} is the energy state of the battery and, where the discretization step of 0.13 kWh
is taken from [127];

• ξ̄ = Cons − PV ∈ {−8 × 2,−16 + 1, · · · , 16ρc kW} is the difference between the electricity demand and
production, where the discretization step of 1 kW is taken from [127].

In the following we introduce the notation sτ := (E(τ), ξ̄(τ)) to denote the state at time τ . We set the action to be
the battery charging power and thus the action space A regroups the feasible battery powers A := {−8, 0, 8ρc kW},
where the discretization this choice for A is motivated by [127].
Finally, cτ : S ×A → R is the cost function at time τ :

cτ (s, Pb) = pcr(τ)max{P τ
m, 0}+ pdr(τ)min{P τ

m, 0}, (5.16)

with

P τ
m = ξ̄τ +

1

ρc
max{Pb, 0}+ ρd min{Pb, 0}. (5.17)

In this study, we consider deterministic policies: in state s at time τ , we define π so that the action taken at time
τ is entirely defined by P τ

b = π(τ, s) ∈ A. The goal is to find a policy π∗ minimizing the expectation of its finite

horizon return: Eπ

[∑t2
τ=t c

τ (sτ ,P τ
b )
]
.

The Q-function associated with a policy π is defined as:

Qπ(t, s, Pb) = E

[
t2∑
τ=t

cτ (sτ ,P τ
b ) | st = s,P t

b = Pb

]
. (5.18)

It is the expected value of choosing action Pb in state s starting at time step t and following policy π afterwards.
The optimal Q-function Q∗ is defined as ∀(t, s, Pb) ∈ T ×S ×A, Q∗(t, s, Pb) = minπ Q

π(t, s, Pb), and it satisfies the
Bellman optimality equation:

Q∗(t, s, Pb) = Es′

[
ct(s, Pb) + min

P̄b∈A
Q∗(t+∆t, s′, P̄b)

]
, (5.19)

with s′ ∼ P(·|s, Pb). Then the optimal policy is simply π∗(t, s) = arg min
Pb∈A

Q∗(t, s, Pb).

The controlled process E satisfies (5.3), hence we can avoid the exploration of the controlled part of the state space
by parallel simulations for every pairs of (E,Pb) ∈ {0, dE, · · · , 13 kWh} × A. The exploration will be needed only
for the unknown process ξ̄. Therefore, instead of standard Q-learning [125], our RL agent will learn from a dataset
D consisting of previously collected transitions on the difference between consumption and production: D contains
|D| days of historical data of Cons and PV. We denote N(s) the number of times s is present in the dataset D.
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Algorithm 8 Offline Q-Learning (Training)

1: Input: Given a training dataset D, initialize N(s) = 0 for all (t, s) ∈ T × S.
2: Initialize Q(t, s, Pb) = 0 for all (t, s, Pb) ∈ T × S ×A
3: for t = t2, t2 −∆, · · · , t1 do
4: for each sample ((t, ξ̄), (t+∆, ξ̄′)) ∈ D do
5: For all (E,Pb), collect state-action pairs (s, Pb) = (E(t), ξ̄(t), Pb) to be updated, and update the visit

times of these state N(s)← N(s) + 1
6: Compute temporal difference error for all collected state-action pairs: TD(s, Pb)← c(s, Pb) + min

P̃b

Q(t+

∆, s′, P̃b)−Q(t, s, Pb)
7: Update Q-function for all collected state-action pairs: Q(t, s, Pb)← Q(t, s, Pb) +

1
N(s) · TD(s, Pb)

8: end for
9: end for

10: Return: Learned policy π(t, s) = arg min
Pb∈A

Q(t, s, Pb)

Given a dataset D, the detailed training process is given in Algorithm 8. Then a policy π is derived as

π(t, s) = arg min
Pb∈A

Q(t, s, Pb), ∀(t, s) ∈ T × S. (5.20)

The obtained policy π will be applied like a feedback controller on new days: at each timestep t, the state E and ξ̄
over the last intervale [t−∆, t]) is observed, then an action Pb is chosen according to the policy π, and the action
Pb = π(t, s) is applied to the system – see Algorithm 9.

Algorithm 9 Offline Q-learning (Application on new days)

1: Given a learned policy π.
2: for t = t1, . . . , t2 do
3: Measure E(t) and ξ̄t to define st

4: Apply Pb = π(t, s) to the battery
5: end for

Every days the set D is enriched and therefore Algorithm 8 retrained before the newly learned policy is applied to
the next day with Algorithm 9.

5.5 Numerical example

The buying and selling prices of electricity are known: the selling price is set to 0, and the buying price is the real
spot price collected over the 2-year period 2022-01-22 to 2024-04-22. Only the consumption and production are
stochastic, and all the measures are historical data from a mainly commercial building in Solaize (France).
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5.5.1 MPC’s updating parameter setting

The MPC control strategy only requires setting the updating horizon h, i.e., the time interval at which the EMS
re-computes a prediction and optimization over a 24-hour horizon. For this numerical example, we have set h = 30
minutes.

5.5.2 Scenario-based methods tuning

5.5.2.1 Scenario generation

To perform stochastic optimization, it is essential to generate a sufficient number of scenarios to capture daily
variability. Leveraging historical data from the system we study, we apply the method proposed by [80] inspired
by [4], to produce plausible scenarios that reflect the underlying distribution of the measurements.
In the following methods, we aim to strike a balance between accurately representing uncertainties and maintaining
computational tractability. More specifically, this involves controlling the number of scenarios to avoid an exponen-
tial increase in complexity. A common approach consists in generating a large set of L equiprobable scenarios and
then selecting a reduced subset of S < L scenarios such that the Wasserstein distance to the original distribution is
minimized. For this selection step, we use the Fast Forward Selection (FFS) algorithm (see Algorithm 2.1 in [64]).
To further improve the quality of the reduced scenario tree, we refine this set by minimizing the nested distance [97]
between the reduced and original trees. This refinement is achieved using a boosted version of Kovacevic and
Pichler’s reduction tree method (KP), as described in Algorithm 3 of [86], and originally introduced in [70].
In the following, we generate an initial set of 10 000 scenarios and reduce it to an optimized set of 225 scenarios for
RPHA. The DSP model is simpler to solve and can directly handle 40 000 scenarios. Due to the limitations of our
computational setup and the quadratic programming solver, the SDAP algorithm for solving the problem (DRO)
struggles to handle a large number of scenarios, mainly because of the projection step onto the ambiguity set (see
Definition 12). Therefore, we restricted our experiments to only S = 100 and L = 400 scenarios.

5.5.2.2 Rolling-horizon framework

The rolling-horizon we use is 24 hours, with t1 = 0:00 and t2 = 24:00, corresponding to a typical daily cycle of
production and consumption, and thus of battery charging and discharging. Empirically, shorter horizons have been
found to yield inferior results. The interval between two steps is ∆ = 10 minutes.

The control algorithm is described in the Process 1 above, where Consmeas,PVmeas denote, respectively, the electric
consumption and photovoltaic production measured at the meter. These variables are deterministic in the sense
that they represent a particular realization of a stochastic process.
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Process 1 Decision process for scenario-based methods

From Consmeas and PVmeas on
past ∆T , generate L scenarios

• Select S scenarios with FFS

• Improve the reduced set with KP (op-
tional)

Compute Pb with a scenario-based
algorithm (DSP, SDAP, RPHA...)

Measure Consmeas(t) and PVmeas(t)

Using the filtration N∆, Consmeas(t),
and PVmeas(t) to select the optimal
P s∗
b and apply decision P s∗

b (t + ∆)

Every day do

for t ∈ [0:00, 24:00]
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5.5.2.3 Tuning hyperparameters

The optimization involves the tuning of hyperparameters: α for VSP and θ for DRO. They are selected through
a cross-validation procedure in which Process 1 is run over a 60-day period, from 2024-05-04 to 2024-07-03, for
various values of θ and α and with and without the optional step KP. The ground truth for electrical consumption
and production is provided by the measured data Consmeas and PVmeas, respectively.

VSP Figure 5.2 illustrates the impact of the combination of FFS and KP and identifies the best value of the
hyperparameter α.

Figure 5.2: Cross-validation VSP: Bill values over a 60 day period for different values of α, with or without the
scenario reduction algorithm KP.

For VSP, it is preferable to apply only the FFS reduction method. Attempting to further align the reduced set with
the original one using the KP algorithm does not improve performance and may even degrade it by constraining the
diversity of the scenarios. It is most likely because our scenario trees are too deep and branch too quickly. However,
for problems with fewer stages, this would likely not be the case, and KP would probably constitute a very good
option.

DRO The results of this cross-validation are shown in Figure 5.3. As the radius of the ambiguity set varies, the
level of robustness is adjusted, and there exists the best value of θ that minimizes the electricity bill. Figure 5.3 also
illustrates that the combination of FFS and KP yields better performance compared to using FFS alone, validating
thus the interest in using KP.
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Figure 5.3: Cross-validation DRO: Bill values over a 60 day period for different values of θ and with or without the
scenario reduction algorithm KP.

5.5.3 Out-of-sample tests

Finally, we evaluate and compare the performance of the various models—VSP (RPHA), SP, DSP, MPC, RL, and
DRO (SDAP)—on the problem over a two-year period, from 2022-01-22 to 2024-01-22.

Figure 5.4 presents the evolution of the performance ratio η, defined as

η(Day) := 100× ρ− Bill

ρ
(5.21)

where ρ represents the battery-less electrical bill:

ρ :=

∫ tf

t0

pcr(t)max (Consmeas(t)− PVmeas(t), 0) + pdr(t)min (Consmeas(t)− PVmeas(t), 0) dt. (5.22)

Figure 5.4 highlights the strong performance of DSP, which outperforms all other models. The ideal performance
that would be achieved with perfect foresight (solving a fully deterministic problem [18, Section 4] where both
production and consumption are perfectly known) is a bill reduction of 12.5%. Thus, DSP reaches 62.5% of the
perfect score. Its strong performance is likely due to its ability to leverage a very large number of scenarios, resulting
in a highly robust solution. Besides it minimizes the expected cost over all the determinist solutions, making this
model highly robust. Both the VSP and RL models demonstrate superior results compared to the classical SP and
MPC approaches. Notably, the RL model achieves competitive performance without requiring extensive fine-tuning
or cross-validation, in contrast to other methods. At the begining RL does not train on a large dataset D this is
why it displays poor results until a bit less than 200 days are trained on. The SP model outperforms the DRO
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Figure 5.4: Percentage reduction in electricity bill relative to storage-less baseline over two years for models: DSP,
VSP (RPHA), SP, EMS, and DRO (SDAP).

approach in terms of bill reduction, this can be attributed to its implementation via PHA with a larger number
of scenarios, leading to a more robust solution. In comparison, the SDAP-based DRO model is limited in that it
only adjusts the scenario probabilities, leaving the scenario values unchanged. As a result, the model’s ability to
fine-tune robustness is constrained by the initial scenario set, potentially limiting its overall effectiveness.

An interesting observation is the contrasting efficiency trends during the summer of 2022: the performance of
VSP and RL improve, while the standard SP’s efficiency declines. This period coincided with unusually high spot
electricity prices in France, driven by limited availability of nuclear power plants and elevated gas prices following
the Russian invasion of Ukraine. Under such conditions, an effective control strategy must adopt a risk-averse stance
to minimize costly electricity consumption. In this regard, the proposed robust approaches demonstrate greater
risk aversion than the standard SP and yields better performance compared to the MPC strategy.

We define four criteria to help explain the differences in model performance, where Pd := −min(ρdP
meas
b , 0) and

Pc := max(Pmeas
b /ρc, 0):

• Autoproduction gain ratio: the amount of energy discharged from the battery that helps meet the demand.
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This gain is defined as

PG = 100×
∫
min{Pd(t),Cons

meas(t)− PVmeas(t)}1C1
(t)dt∫

Consmeas(t)dt
. (5.23)

Where, C1 : PVmeas(t) < Consmeas(t).

• Autoconsumption gain ratio: the amount of surplus photovoltaic energy that is effectively stored in the
battery. This gain is defined as

CG = 100×
∫
max{Pc(t),PV

meas(t)− Cons}1C2
(t)dt∫

PVmeas(t)dt
. (5.24)

Where, C2 : PVmeas(t) > Consmeas(t).

• Discharging error ratio: the amount of energy discharged from the battery that exceeds the energy need,
and is somehow spoiled. This ratio is defined as

DE = 100×
∫
(Pd(t)− (Consmeas(t)− PVmeas(t)))1C3

(t)dt∫
Consmeas(t)dt

. (5.25)

Where, C3 : PVmeas(t) < Consmeas(t) and Consmeas(t)− PVmeas(t) < Pd(t).

• Grid charging ratio: the amount of energy charged to the battery directly from the grid. This ratio is
defined as

GC = 100×
∫
(Pc(t)− (PVmeas(t)− Consmeas(t)))1C4

(t)dt∫
PVmeas(t)dt

. (5.26)

Where, C4 : PVmeas(t) > Consmeas(t) and PVmeas(t)− Consmeas(t) < Pc(t).

These criteria are integrated over the two year period and these values are reported in Table 5.1.

Table 5.1: Evaluation of models according to four performance criteria. Values in parentheses indicate the percentage
difference relative to MPC.

Method CG PG DE GC

DSP 1.2900 (49.7%) 1.4437 (12.2%) 0.0378 (-65.3%) 2.1109 (-9.8%)
VSP 0.9248 (7.3%) 1.3086 (1.7%) 0.0783 (-28.1%) 2.2602 (-3.4%)
RL 0.9189 (6.6%) 1.1824 (-8.1%) 0.0649 (-40.5%) 2.0080 (-14.2%)
MPC 0.8620 (0.0%) 1.2867 (0.0%) 0.1090 (0.0%) 2.3400 (0.0%)
DRO 0.8850 (2.7%) 1.2715 (-1.2%) 0.1135 (4.1%) 2.2927 (-2.0%)
SP 0.8811 (2.1%) 1.2883 (0.1%) 0.1223 (12.2%) 2.3593 (+0.8%)

DSP achieves the highest autoproduction and autoconsumption gain ratios among all methods. This indicates that
it stores surplus photovoltaic energy more effectively and makes better use of the battery to cover consumption
when needed. Moreover, DSP has the lowest autoproduction loss ratio, meaning it makes fewer errors by discharging
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the battery when it is not necessary, compared to the other models. In addition, except for RL, DSP also has the
smallest autoconsumption loss ratio, which suggests that it rarely charges the battery when there is insufficient solar
production—therefore, it tends to purchase less electricity from the grid. According to Table 5.1, the performance
of scenario-based models is primarily driven by their ability to capture gains, whereas the performance of the RL
model stems from its ability to limit losses. Indeed, RL exhibits low gain ratios, but also notably low loss ratios.
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Chapter 6

Concluding remarks and future work

This thesis addresses multistage decision-making through the lens of multistage stochastic optimization, with a
particular focus on the robustness of various modeling approaches. These problems are inherently challenging due
to the exponential growth in dimensionality caused by the interplay between decisions and uncertainties over time.
Reducing this complexity while preserving the essential characteristics of the solution space and optimal value is
crucial for real-world applications. To this end, this work introduces a novel methodology based on Wasserstein
barycenters for scenario tree reduction, aiming to make multistage models more tractable and practically usable.
Beyond the theoretical advancements outlined in this thesis recalled below, the proposed methodologies have been
successfully applied to industrial energy management problems at IFPEN. Each major research direction pursued
during this PhD has led to original scientific contributions, resulting in two published papers and two additional
manuscripts currently under review in peer-reviewed journals. To promote transparency and reproducibility, the
associated algorithms have been released as open-source Python packages (https://dan-mim.github.io/). As a
further testament to the practical impact of this work, it has enabled the development of a fully optimized pipeline
for industrial energy management systems, which is already integrated within IFPEN’s softwares. This integration
of cutting-edge research with real-world applications highlights the thesis’s dual focus on methodological innovation
and industrial relevance, a shared commitment of IFPEN and Mines Paris PSL.

In the pursuit of efficient solutions to multistage stochastic optimization problems, this thesis focuses on enhancing
the scenario tree reduction algorithm developed by Kovacevic and Pichler [70]. While this algorithm is recognized
for producing high-quality reduced scenario trees that preserve an adherence between the optimal values and so-
lutions of both original and reduced multistage stochastic programs, its computational cost remains prohibitive
for large-scale instances commonly encountered in industrial settings. To address this limitation, we conducted an
in-depth analysis of the algorithm’s structure, revisiting the foundational work [70]. We identified its computational
bottleneck: the repeated solution of large-scale linear programs (LPs) at each iteration. Crucially, we discovered
that these structured LPs correspond to a well-studied class of problems in machine learning and data science;
namely, Wasserstein barycenter problems. However, after examination, we have noticed that existing meth-
ods for solving large-scale Wasserstein barycenters are predominantly inexact, which limits their applicability in
contexts requiring high precision. Moreover, their approximations rely on hyperparameters that must be tuned
for each WB computation, whereas in our setting we need to compute a very large number of WBs rapidly. This
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observation revealed a broader need for exact and scalable algorithms for barycenter computation, extending be-
yond our initial goal of scenario tree reduction. To meet this need, we developed a new method for computing
Wasserstein barycenters in a broad setting—including balanced and unbalanced formulations. Our approach, the
Method of Averaged Marginals (MAM), is built upon the Douglas-Rachford operator splitting algorithm. MAM
computes barycenter of measures via the marginals of transport plans and is designed to be simple to implement,
with support for parallelized deterministic or randomized computations. This robust and versatile method not only
improves the scenario tree reduction of Kovacevic and Pichler but also advances the state-of-the-art in comput-
ing Wasserstein barycenters and opens new possibilities in domains where exact barycenters are critical, such as
medical image analysis and other applications in machine learning. As detailed in Chapter 2, MAM is capable of
solving a novel class of unbalanced optimal transport problems, introduced also in our paper published in the SIAM
Journal on Mathematics and Data Sciences (SIMODS) [85]. Further extending this line of research, our second
paper—accepted for publication in the Pacific Journal of Optimization (PJO) [84], in a special issue honoring Pro-
fessor R. Tyrrell Rockafellar—presents an innovative manner for computing constrained Wasserstein barycenters,
where constraints are imposed directly on the barycenter rather than on the transport plans. Our approaches for
computing constrained Wasserstein barycenters can handle convex and nonconvex constraints as long as project-
ing onto the set (defined by this constraints) is a simple task. These contributions, discussed in Chapter 3, opens
promising avenues for scenario reduction, image processing, and other applications requiring structured Wasserstein
barycenter solutions.

After completing our research on Wasserstein barycenters, we returned to our initial motivating application: sce-
nario tree reduction for multistage stochastic programs. As detailed in Chapter 4, we integrated our barycenter
computation tools into the algorithm of Kovacevic and Pichler, and benchmarked the enhanced method across
various multistage scenario tree configurations. Our experiments demonstrate a significant speedup—exceeding
9000%—in computation time compared to the original algorithm, while maintaining the same level of accuracy in
minimizing the nested distance. This improvement highlights the practical value of exploiting the structure of the
LPs subproblems in the scenario reduction workflows. A manuscript presenting this innovative approach to scenario
tree reduction is currently under review at the Annals of Operations Research [86].

With an efficient algorithm for reducing multistage scenario trees in hand, we turned our attention to the core
application of this thesis: the optimization of a real-world energy management system (EMS) developed at IFPEN.
As presented in Chapter 5, we explored several modeling approaches for this multiperiod decision problem under
uncertainty. These include Model Predictive Control (MPC), risk-neutral and risk-averse multistage stochastic
models, distributionally robust optimization, as well as reinforcement learning with scenario-based formulations.
To solve these models, we deployed a range of advanced optimization techniques, including the Progressive Hedging
Algorithm [104], Regularized Progressive Hedging [80], Scenario Decomposition with Alternating Projections [44],
among others. This comprehensive modeling and algorithmic exploration has led to a scientific manuscript currently
under revision in a reputable engineering journal [87], highlighting both the methodological depth and the industrial
relevance of our work .

6.1 Participation in scientific events and valorization of our research

All the slides and codes can be found on https://dan-mim.github.io/publications/.
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The MAM algorithm has been presented in several scientific events:

• ISMP 2024 – Int. Symposium on Mathematical Programming Computing Wasserstein Barycenters via
Operator Splitting (https://ismp2024.gerad.ca/);

• EUROPT 2024 –New Approach to Optimal Transport problems (withW. de Oliveira) (https://europt2024.
event.lu.se/);

• PGMO 2023 – the annual conference of the Optimization, OR, and Data Science program of the FMJH (Fon-
dation Mathématiques Jacques Hadamard) (https://smf.emath.fr/evenements-smf/pgmo-days-2023);

• CIROQUO – Presentation of a poster at the Consortium in Applied Mathematics (https://ciroquo.
ec-lyon.fr/evenements.html);

• Presentation of a poster during the DATA IA days of CentraleSupelec. (https://www.dataia.eu/).

The extensions on the constraint WB have been presented in:

• ISMP 2024 – Int. Symposium on Mathematical Programming Computing Optimal Transport problems
(https://ismp2024.gerad.ca/);

• ICSP 2025 – Int. Conference on Stochastic Programming How can constraint Optimal Transport reshape
ML? (with G. Sempere) (https://icsp2025.org/).

The work on the scenario tree reduction has been presented in :

• PGMO 2024 – Gaspard Monge Program Days (EDF/INRIA) Boosting Scenario Tree Reduction (https:
//www.fondation-hadamard.fr/fr/articles/2024/02/21/pgmodays-2024/);

• ICSP 2025 – Int. Conference on Stochastic Programming How Optimal Transport can sharpen multi-stage
decisions: Boosting scenario tree algorithms (https://icsp2025.org/).

The comparison of robustness between reinforcement learning and other stochastic programming model has been
presented in:

• ICCOPT 2025 – Int. Conf. on Continuous Optimization Optimization framework for Energy Management
Systems: RL vs Stochastic Programming (https://sites.google.com/view/iccopt2025/home).

Notable conferences and events I attended within these years include:

• NeurIPS Paris (https://scai.sorbonne-universite.fr/public/events/view/4ad2190f2c212abfd60f/
8)
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Key courses I participated in:

• MVA/MASH Course on Computational Optimal Transport by Gabriel Peyré (https://www.master-mva.
com/cours/computational-optimal-transport/)

• PSL week on Stochastic Optimization by Welington de Oliveira (https://www.oliveira.mat.br/teaching)

Courses I instructed in 2023, 2024 and 2025:

• Mines Paris, Mathematics for Data Science (L3), Centre de Morphologie Mathématique (https://www.
cmm.minesparis.psl.eu/), with Bruno Figliuzzi and Chloé-Agathe Azencott.

6.2 Future research directions

Several topics could be considered in the continuation of this work:

• An interesting improvement to MAM would be to replace the Euclidean distance with Bregman distance
functions in the Douglas-Rachford scheme and leverage the results of [30] since the authors give explicit steps.
The research process is relatively straightforward: adapt the current method with minor modifications to
incorporate [30], and if the preliminary results are promising, pursue a deeper mathematical analysis.

• Another avenue would be to enhance MAM using a Douglas–Rachford splitting scheme with adaptive step
sizes, potentially by monitoring the distance to the set B.

• Implementing MAM on GPUs could significantly improve performance. While the current implementation on
GitHub [81] is CPU-based, a GPU-enabled version is under consideration.

• A promising line of inquiry is to explore a new approach for accelerating MAM Algorithm 1 in the unbalanced
barycenter setting, inspired by the Frank–Wolfe algorithm (FW) [9]. This method has been investigated in
the context of Sinkhorn’s algorithm [78]; however, applying it to the unbalanced formulation proposed in
eq. (2.11) could yield novel insights. The idea is to linearize the squared Euclidean distance in eq. (2.11),
making minimization via FW explicit. This could potentially bypass the most computationally expensive step
in MAM, namely the projection onto the simplex. The key question would then be to study the convergence
trade-off: while each FW iteration is fast, the total number of iterations required for convergence can be
substantial.

• Studying barycenters with the Hellinger distance [121] could also be worthwhile, as they may behave similarly
to the Unbalanced Wasserstein barycenters (UWB) [76] proposed in Chapter 2. While UWB may be more
general and suitable for imaging problems, the Hellinger formulation could be simpler to compute and does
not require tuning a hyperparameter—an advantage in some settings, though it can also be a limitation.

• Similar to our extension of the Wasserstein barycenter problem, the best barycenter problem [48] presents
another extension with strong industrial relevance (e.g., at IFPEN in the context of reduced basis methods
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for PDEs). This problem has been studied for large-scale PDE settings to learn the space, but due to
its complexity, it has only been industrially implemented for 1D barycenters. More recently, a theory for
higher dimensions [7] has been proposed but it leverages a regularization that may significantly affect solution
accuracy; it also uses automatic differentiation that can accumulate errors here. It is worth investigating
whether MAM’s Douglas–Rachford steps could be adapted to this specialized challenge.

• Further improvements in combining Wasserstein barycenters with scenario tree reduction are conceivable.
For instance, one could experiment with warm-starting MAM through multiple node-dependent barycenter
problems.

• It would probably be possible to propose a scenario reduction method that unlike the approach in Chapter 4,
does not require an initial filtration and instead operates directly on the original tree. The idea would be
to apply the Kovacevic–Pichler algorithm to the original tree, with the reduced tree preserving the same
filtration, but replacing the classical Wasserstein barycenter in the recursion with a constrained Wasserstein
barycenter (see Chapter 3) to trim the filtration of the subtrees. The constraint would require finding a
barycenter of the original subtrees with a reduced number of edges (supports) compared to the original tree.

• A new type of barycenter, which one might call a Process Barycenter, could be defined using the Nested/Process
distance of G. Pflug and A. Pichler [97]. While formulating such a concept is straightforward, further work
would be required to determine whether it offers novel insights, mathematical properties, or computational
advantages for scenario tree reduction.

• Another potential application of scenario tree reduction lies in recent reinforcement learning techniques, such
as policy gradient with tree expansion [41]. In tree-based exploration, the search typically relies on heuristics
to select promising nodes to build the trees; here, tree reduction could be applied directly. The new tree
reduction approach we proposed in Chapter 4 is particularly fast for very large but shallow trees, which fits
this context well.

• We have provided a rigorous review comparing different models for multistage stochastic problems in Chap-
ter 5. Although we did not employ models that violate the assumptions of our problem class (e.g., no stagewise
independence), it could be valuable to use such models as heuristics. One example is dynamic programming
with Stochastic Dual Dynamic Programming (SDDP) [91], which remains widely used in practice.

• In Chapter 5, we noted that SDAP is computationally expensive, primarily due to the projection onto the
Wasserstein ambiguity set. This projection problem arises in many contexts, so developing an efficient method
for it would be of broad interest. The nature of the problem suggests that it might be reformulated within a
Douglas–Rachford framework.

• Replacing the computationally demanding Wasserstein distance in DRO with the MaximumMean Discrepancy
(MMD) [61] could be another interesting direction. MMD is easier to compute, which could allow DRO to
handle larger scenario trees. The challenge would shift to kernel selection, which, while nontrivial, might still
be easier to address.

• Another limitation of the WDRO model we adopt in Chapter 5 is the fixed support: our study optimizes
only the probabilities, but allowing the support to be optimized would increase generality and flexibility. At
present, however, this remains a large-scale NP-hard problem.

• Scenario tree reduction has proven to be an effective tool for improving the adaptability of classical stochastic
optimization methods. It would be interesting to analyze tree structures encountered in multistage DRO. In
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our study, the trees have many stages and tend to adopt a fan-like structure early on. Using large binary trees,
for example, might help preserve generality in DRO, though this would likely lead to combinatorial explosion
and should first be tested with fewer stages. Sampling at hourly intervals and performing projections could
help mitigate this issue.

• The introduction of RPHA by Malisani et al. [80] motivates a generalization of the work by Blanchet et al. [19],
which shows an equivalence between DRO and regularized optimization for classification. Investigating the
theoretical proximity between RPHA and WDRO in the multistage setting would be of interest.

• In our reinforcement learning experiments of Chapter 5, we did not employ a state-of-the-art method; instead,
we used classical Q-learning techniques. Despite this, the model performed well, suggesting that applying more
advanced RL algorithms could yield even better results and provide a stronger challenge to DSP. For example,
with a larger dataset we could implement a neural RL model.
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