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Abstract: This work presents two optimization methods to compute, subject to constraints, a Wasserstein
barycenter (WB) of finitely many empirical probability measures. The new measure, denoted by constrained
Wasserstein barycenter, extends the applicability of the standard WB to pre-required geometrical or sta-
tistical constraints. Our first approach is an extension of the Method of Averaged Marginals (Mimouni et
al., 2024) to compute WBs subject to convex constraints. In the nonconvex setting, we propose an opti-
mization model whose necessary optimality conditions are written as a linkage problem with non-elicitable
monotonicity. To solve such a linkage problem, we combine the Progressive Decoupling Algorithm (Rock-
afellar, 2019) with Difference-of-Convex programming techniques. We give the mathematical properties of
our approaches and evaluate their numerical performances in two applications, demonstrating both their
computational efficiency and the practical relevance of constrained Wasserstein barycenters.
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1 Introduction
Let P(Rd) be the set of Borel probability measures on Rd. A Wasserstein barycenter (WB) of a set of M
measures νm ∈ P(Rd), m = 1, . . . ,M , is a solution to the following optimization problem

min
µ∈P(Rd)

1

M

M∑
m=1

W 2
2 (µ, ν

m) , (1)

where W2(µ, ν) is the (quadratic) 2-Wasserstein distance between two measures µ, ν ∈ P(Rd); see (3) below.
Informally, a WB is a measure in P(Rd) such that the total cost for transporting it to all νm is minimal
concerning the 2-Wasserstein distance. A WB exists in generality and, if one of the νm vanishes on all
Borel subsets of Hausdorff dimension d − 1, then it is also unique [1]. Due to its ability to aggregate
and summarize probability measures while preserving spatial characteristics, the concept of Wasserstein
barycenter has gained prominence across diverse applications, ranging from applied probability, passing
through imaging to machine learning [8].

When the measures to be summarized have finite supports, i.e., empirical measures, problem (1) can
be reformulated as a linear programming (LP) problem. However, the size of this LP problem increases
dramatically, scaling exponentially with the number of measures. As a result, it can quickly exceed the
capabilities of standard LP solvers, even when dealing with a small number of measures [2, 7]. Therefore,
specialized methods exploiting the problem’s structure must come into play. While exact techniques usually
build upon linear programming techniques [23, 6, 18], inexact approaches tackle (1) via reformulations based
on an entropic regularization [10, 17, 5, 21]. A new technique leveraging the Douglas-Rachford splitting
method is proposed in [20], and asymptotically computes an exact solution to (1).

While the dedicated literature on numerical methods for computing WBs focuses mostly on the uncon-
strained setting, that is, µ can be freely chosen in the space P(Rd), many practical situations require the
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target barycenter to satisfy certain constraints, ensuring it belongs to a predefined closed set X. Mathemat-
ically, the problem of computing a constrained Wasserstein barycenter (CWB) can be formulated as

min
µ∈P(Rd)

1

M

M∑
m=1

W 2
2 (µ, ν

m) s.t. µ ∈ X . (2)

The additional constraint µ ∈ X is particularly relevant in applications where the barycenter must adhere to
specific structural or operational requirements, or align with prior knowledge about the desired properties of
µ. The set X can influence the geometry of the barycenter, its statistical properties, its support, or its physical
feasibility. Hence, the optimization problem (2) offers greater modeling flexibility to tackle WB applications.
For instance, the work [27] employs CWBs in image morphing applications. The authors consider variants
of problem (2) with X being manifolds, modeling sparsity or generative adversarial network (GAN)-based
representations. They show that when compared unconstrained WBs, model (2) provides superior results
for tasks like natural image morphing, offering smooth, visually plausible transitions without introducing
artifacts. By leveraging priors like GANs, [27] handles nonconvex constraints with a heuristic inspired by
the ADMM algorithm.

Another application where a constrained barycenter is sought arises when summarizing images by re-
stricting the total number of pixels that can have nonzero mass. In such an application, a black-and-white
image can be associated with a probability measure: the pixels (positions) constitute the measure’s support,
while the intensity of each pixel represents the measure’s (probability) mass. Figure 1c shows an uncon-
strained WB of the two top images 1a and 1b, computed by solving the unconstrained problem (1). Those
images are of dimension 40× 40, i.e., they have 1600 pixels. To compute a summarized picture with at most
80 pixels with non-zero mass, one may think of defining X as being the set of 40 × 40 images with such a
property and project the WB of Figure 1c onto X. Such a naive approach gives the image in Figure 1d,
which does not keep the entire relevant information. On the other hand, by considering (a model for) the
constrained problem (2) with such a set X and applying the algorithm we present in Section 4, we get the
image depicted in Figure 1e.

(a) Noisy image of a 90. (b) Second noisy image of a 90.

(c) Unconstrained barycenter.
(d) Unconstrained barycenter pro-
jected onto X.

(e) Constrained barycenter.

Figure 1: Unconstrained WB, projection of the unconstrained WB, and sparse barycenter of the two noisy images
1a and 1b.

We note that (2) is not the only way to model restrictions in WB applications. Some authors have
studied constrains on the transport plans to address specific applications, such as those arising in finance,
martingale transport problems, and other domains (see, for instance, [16, 13, 4] and [22, §4.20 and §10.12]).
In these contexts, methods based on iterative Bregman projections, such as those discussed in [22], have been
adapted to handle the additional constraints by alternating projections. In either of these two constrained
Wasserstein barycenter models, convexity of the additional constraints evidently plays an important role in
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numerical optimization. Many algorithms assume convexity, thereby simplifying the optimization model but
reducing applicability in real-world tasks where nonconvex constraints are common. Furthermore, scalability
and interpretability of solutions remain open challenges when dealing with high-dimensional or structured
data.

1.1 Contributions and Organization
This work presents two approaches to tackle constrained Wasserstein barycenter problems. Our first con-
tribution is the extension of the Method of Averaged Marginals (MAM) introduced in [20] to tackle prob-
lem (2). We show that our extension of MAM asymptotically computes an exact solution to (2) provided
the constraints are convex. As the original method of [20], our algorithm copes with scalability issues and
is memory efficient. In the nonconvex setting, our approach becomes an heuristic that works notably well
in some applications, as evidenced by our numerical results.

To cope with nonconvexity in a mathematically sound approach, we propose a relaxed model for (2)
based on the penalization of the squared distance from the nonconvex set. As we show in Section 4, our
model consists of minimizing a nonsmooth Difference-of-Convex (DC) function over a linear subspace. Its
necessary optimality conditions can be written as a linkage problem. However, since convexity cannot be
elicited at any level, Rockafellar’s compelling Progressive Decoupling Algorithm [24] (see also [25] and [29])
cannot be directly applied. Based on the recent work [28], we specialize the progressive decoupling strategy
to the constrained WB setting to design an algorithm with convergence guarantees to solve such a linkage
problem, computing thus points satisfying certain necessary optimality condition to our relaxed (penalized)
model for (2). As a further contribution, we conduct experiments on several data sets from the literature to
demonstrate the computational efficiency and accuracy of the new approaches.

This work is structured as follows. Section 2 provides some background material on Wasserstein barycen-
ter problems. Section 3 extends the Method of Averaged Marginals (MAM) of [20] to tackle (2) when X is
convex. Then, numerical results are shown where our approach is experimented with convex and nonconvex
sets. The precise case of nonconvex sets is addressed in Section 4, where we propose a relaxed model for (2)
and present a progressive decoupling strategy with convergence guarantees. Finally, a numerical illustration
comparing the approaches closes the work.

Notation. Given a matrix A ∈ RR×S , we denote by A:s ∈ RR its sth column. Given R ∈ N and τ > 0,
let 1R be the column vector of all ones of size R, ∆R(τ) := {y ∈ RN

+ : y⊤ 1R = τ}, and ∆R := ∆R(1) the

(R− 1)-simplex. Given a vector y ∈ RR, the Euclidean projection of y onto a closed set X ⊂ RR is denoted
by ProjX(y), which is the set of solutions to the problem dist2X(y) := minx∈X

1
2
∥x − y∥2. The indicator

function of X is denoted by iX(·). Also, δξ denotes the Dirac unit mass on a given point ξ ∈ Rd.

2 Background Material

Let ξ and ζ be two random vectors having probability measures µ and ν in P(Rd), that is, ξ ∼ µ and ζ ∼ ν.
Their 2-Wasserstein distance is given by:

W2(µ, ν) :=

(
inf

π∈U(µ,ν)

∫
Rd×Rd

∥ξ − ζ∥2dπ(ξ, ζ)
)1/2

, (3)

where U(µ, ν) is the set of all probability measures on Rd × Rd having marginals µ and ν. We denote
by W 2

2 (µ, ν) the squared 2-Wassserstein distance, i.e., W 2
2 (µ, ν) := (W2(µ, ν))2. As already mentioned in

the Introduction, a Wasserstein barycenter of a set of M measures {ν1, . . . , νM} in P(Rd) is a solution to
problem (1). In this work, we are concerned with empirical (discrete) measures νm having finite support
sets: for all m = 1, . . . ,M , the number of atoms of νm is denoted by Sm, its support by

supp(νm) := {ζm1 , . . . , ζmSm} , probability mass by qm ∈ ∆Sm , and thus νm =
Sm∑
s=1

qms δζms . (4)

It follows from the definition of the support of a measure νm that νm(ζms ) = qms > 0 for all s = 1, . . . , Sm.
As computing a WB of M measures νm amounts to determine a new measure µ̄ solving (1), it turns out that
such a task consists of choosing simultaneously a support supp(µ̄) and a probability vector p̄ minimizing the
(weighted) Wasserstein distance to all M measures. As for the decision on the support, Proposition 1 in [2]
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asserts that every solution µ̄ to (1) has support satisfying the following key inclusion:

supp(µ̄) ⊂ Ξ :=
{
ξ1, . . . , ξR

}
(5)

:=

{
1

M

M∑
m=1

ζm : ζm ∈ supp(νm), m = 1, . . . ,M

}
.

Thanks to this result, we can work with the fixed set Ξ having finitely many R atoms and optimize only
with respect to the probability vector: once p̄ ∈ ∆R is determined, we can recover a WB measure by setting

µ̄ =
∑

r∈{j:p̄j>0}
p̄rδξr . (6)

Accordingly, two observations arise. First, with two empirical distributions µ and νm, the squared 2-
Wasserstein distance simplifies to the following transportation problem:

W 2
2 (µ, ν) = min

π∈RR×Sm

+

R∑
r=1

Sm∑
s=1

∥ξr − ζms ∥2πrs s.t. (π)⊤ 1R = qm and π 1Sm = p.

Hence, problem (1) can be reformulated as the following finite-dimensional LP:
min

p∈Rn, π≥0

M∑
m=1

1

M

R∑
r=1

Sm∑
s=1

∥ξr − ζms ∥2πm
rs

s.t. (πm)⊤ 1R = qm, m = 1, . . . ,M

πm 1Sm = p, m = 1, . . . ,M.

(7)

Note that if a pair (p, π) is feasible to the above problem, then p ∈ ∆R due to the fact that π ≥ 0 and
qm ∈ ∆Sm for all m = 1, . . . ,M .

Our second observation is related to the constrained Wasserstein barycenter problem (2). Thanks to (5),
imposing a constraint of the type µ ∈ X can be done by restricting p in (7) to a certain set X ⊂ RR related
to X. In other words, in the empirical setting, the constrained WB problem (2) can be alternatively written
as follows, for a set X ⊂ RR associated to X ⊂ P(Rd):

min
p∈X, π≥0

M∑
m=1

1

M

R∑
r=1

Sm∑
s=1

∥ξr − ζms ∥2πm
rs

s.t. (πm)⊤ 1R = qm, m = 1, . . . ,M

πm 1Sm = p, m = 1, . . . ,M.

(8)

We highlight that this problem is solvable as long as X is closed and intersects the simplex ∆R. Observe
further that while (7) is always an LP, problem (8) can be a nonconvex nonlinear optimization problem
depending on X. To give examples of how the set of constraints X on the measure relates to the set of
constraints X on the probability vector, suppose we impose Wasserstein barycenters to have expected value
equal to a given ξ̄ ∈ Rd. In this case,

X =
{
µ ∈ P(Rd) : Eµ[ξ] = ξ̄

}
and the corresponding set is X =

{
p ∈ RR :

R∑
r=1

prξr = ξ̄

}
.

Such a setting finds applications, for instance, in scenario tree reduction where one might be interested in
assigning probabilities to a smaller scenario tree in order to minimize the sum of Wasserstein distances while
preserving, in every subtree issued by a node, certain theoretical expected value; see [12, §3.1] and [19]. If,
instead, we require µ to have a support size of at most n ≥ 1 atoms, then

X =
{
µ ∈ P(Rd) : |supp(µ)| ≤ n

}
and the corresponding set is X =

{
p ∈ RR : ∥p∥0 ≤ n

}
,

where ∥p∥0 counts the number of nonzero components of the vector p. This is the setting considered in
Figure 1e.

3 Constrained Wasserstein Barycenter
In the unconstrained setting, the Method of Averaged Marginals (MAM) proposed in [20] solves the LP
problem (7) by exploiting its particular structure and applying the Douglas-Rachford splitting method (DR)
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[14, 15]. The resulting algorithm is memory efficiently, can run in a deterministic or randomized fashion,
copes with scalability issues, and has convergence guarantees. It updates transportation plans by projecting
(in parallel) several vectors of dimension R onto sets of the form of ∆R(τ) =

{
y ∈ RR

+ : y⊤ 1R = τ
}
, with

given scalar τ > 0. This task can be performed exactly and efficiently using specialized methods [9]. Once
the transportation plans are updated, its marginals pm, m = 1, . . . ,M are easily computed and an estimation
of the probability vector yielding a WB is computed by averaging these marginals. We refer the interested
reader to [20, §5] to a thorough discussion about the method and its convergence analysis. In what follows,
our goal is to extend MAM to compute constrained WBs.

3.1 The Method of Averaged Marginals for Constrained WB
This section features our first contribution: the extension of MAM to compute a solution µ̄ to problem (2).
As discussed in Section 2, this amounts to compute a p-part solution to problem (8) and recover µ̄ as in (6).
To this end, we make the following assumption.

Assumption 1. The set X ⊂ RR in (8) is closed, convex, and satisfies X ∩ ∆R ̸= ∅. Furthermore, the
Euclidean projection onto it is convenient to execute.

We recall that closeness of X and condition X ∩∆R ̸= ∅ are enough to ensure that (8) is solvable. Next,
by denoting

cmrs :=
1

M
∥ξr − ζms ∥2 ∀ r, s, m, and inner product ⟨c, π⟩ :=

∑
r,s,m

cmrsπ
m
rs,

we drop the decision variable p in (8) and rewrite the problem in the following compact form:

min
π∈BX

⟨c, π⟩ s.t. πm ∈ Πm, m = 1, . . . ,M, (9a)

where
Πm :=

{
πm ≥ 0 : (πm)⊤ 1R = qm

}
, m = 1, . . . ,M, (9b)

and
BX :=

{
π = (π1, . . . , πM ) : π1 1S1 = π2 1S2 = · · · = πM 1

SM ∈ X
}
. (9c)

Thus, once problem (9) is solved, we can easily recover a p-solution to problem (8) and, as a consequence,
a constrained WB measure µ̄.

To solve (9), we follow the lead of [20] and employ the DR algorithm, which asymptotically computes a
solution by repeating the following steps, with k = 0, 1, . . . and given initial point θ0 = (θ1,0, . . . , θM,0) and
prox-parameter ρ > 0: 

πk+1 = ProjBX
(θk)

π̂k+1 = arg min
π∈Π

⟨c, π⟩+
ρ

2
∥π − (2πk+1 − θk)∥2

θk+1 = θk + π̂k+1 − πk+1,

(10)

with Π := Π1 × . . . × ΠM . Assumption 1 ensures that the functions above are proper, convex, lower-
semicontinuous functions and problem (9) is solvable. The following is a direct consequence of Theorem 25.6
and Corollary 27.4 of [3].

Theorem 1. Under Assumption 1, the sequence {θk} produced by the DR algorithm (10) converges to a
point θ̄, and the following holds: π̄ := ProjBX

(θ̄) solves (9), and {πk} and {π̂k} converge to π̄.

The DR algorithm is attractive when the two first steps in (10) are convenient to execute, which is the
case in our setting. Indeed, the following result extracted from [20, Prop. 5.2] asserts that the second step
amounts to perform projections onto ∆R(qms ), for s = 1, . . . , Sm and m = 1, . . . ,M .

Proposition 2 ([20], Prop. 5.2). The minimization π̂ := argminπ∈Π ⟨c, π⟩+ ρ
2
∥π − y∥2 can be performed

exactly, in parallel along the columns of each transport plan ym, as

π̂m
:s = Proj∆R(qms )

(
ym:s −

1

ρ
cm:s

)
, (11)

for all m = 1, . . . ,M and s = 1, . . . , Sm.

The following original result, which does not require X to be convex, shows that the first step in (10) is
simple provided the projection onto X is convenient to execute.
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Proposition 3. Let θ ∈ RR×(S1+···+SM ), am :=
1

Sm
1

S1 +···+ 1
SM

, and pm := θm 1Sm , m = 1, . . . ,M . Given

a nonempty and closed set X ⊂ RR, let p ∈ ProjX(
∑M

m=1 ampm) and BX given in (9c). Then, an element
π ∈ ProjBX

(θ) has the form

πm
:s = θm:s +

(p− pm)

Sm
, (12)

for all m = 1, . . . ,M and s = 1, . . . , Sm.

Proof. Given an arbitrary w ∈ RR, let us define the set

Bw :=
{
π = (π1, . . . , πM ) : π1 1S1 = π2 1S2 = · · · = πM 1

SM = w
}
.

Observe that Bw is nonempty1 and BX in (9c) can be written as BX = ∪w∈XBw. Therefore, computing a
point in ProjBX

(θ) can be done by solving

min
y∈BX

1

2
∥y − θ∥2 = min

w∈X, y∈Bw

1

2
∥y − θ∥2 = min

w∈X

{
min
y∈Bw

1

2
∥y − θ∥2

}
.

The inner problem above is nothing but the projection onto Bw. It can be written as

z = ProjBw
(θ) =

 argmin
y

1

2

M∑
m=1

∥ym − θm∥2

s.t.
∑Sm

s=1 y
m
rs − wr = 0, r = 1, . . . , R, m = 1, . . . ,M.

Being a solvable strongly convex quadratic program problem, the existence of Lagrange multipliers is ensured.
As a result, the optimality conditions for this problem read as

(zmrs − θmrs) + λm
r = 0, ∀ r, s,m (13)

Sm∑
s=1

zmrs = wr, ∀ r,m. (14)

Note that summing equation (13) over s = 1, . . . , Sm, with r and m fixed, gives

λm
r =

∑Sm

s=1 z
m
rs −

∑Sm

s=1 θ
m
rs

Sm
=

wr − pmr
Sm

, ∀ r,

where the last equality follows by (14) and definition of pm. As a result, we conclude that z = ProjBw
(θ)

is given by

zmrs = θmrs +
wr − pmr

Sm
, ∀ r, s,m. (15)

Next, we show that when w ∈ X is an element of ProjX(
∑M

m=1 ampm), then z above belongs to the set
ProjBX

(θ). Indeed,

∥z − θ∥2 =

M∑
m=1

∥zm − θm∥2 =

M∑
m=1

Sm∥
w − pm

Sm
∥2 =

M∑
m=1

1

Sm
∥w − pm∥2,

and thus

arg min
w∈X

{
min
y∈Bw

1

2
∥y − θ∥2

}
= arg min

w∈X

1

2

M∑
m=1

1

Sm
∥w − pm∥2

= arg min
w∈X

1

2

M∑
m=1

1
Sm ∥w − pm∥2

1∑M
j=1

1
Sj

= arg min
w∈X

1

2

M∑
m=1

am∥w − pm∥2

= arg min
w∈X

1

2

M∑
m=1

{
am∥w∥2 − 2amw⊤pm + am∥pm∥2

}

= arg min
w∈X

1

2

{
∥w∥2

M∑
m=1

am − 2w⊤

(
M∑

m=1

ampm

)}

= ProjX

(
M∑

m=1

ampm

)
,

1The plans πm
:1 = w and πm

:s = 0 for s ̸= 1 compose a point π that belongs to Bw.
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because
∑M

m=1 am = 1. This shows that the minimum value of min
w∈X

min
y∈Bw

∥y − θ∥2 is reached at z given

in (15) and w ∈ ProjX(
∑M

m=1 ampm). The proof is thus complete.

Recall that this proposition does not assume convexity of X. Hence, whether convexity is present or not,

projecting onto BX ⊂ RR×(S1+···+SM ) is simple as long as the projection onto X ⊂ RR is easy to perform.
By relying on Propositions 2 and 3, we now gather and simplify the three steps of the DR Algorithm 10
to provide our extension of the MAM algorithm of [20] to the constrained setting. We start by invoking

Proposition 2 that allows us to decompose the second step of DR Algorithm 10 into
∑M

m=1 S
m simple

projections: every column of π̂m,k+1 is given by

π̂m,k+1
:s = Proj∆R(qms )

(
2πm,k+1

:s − θm,k
:s −

1

ρ
cm:s

)
∀ s,m.

It follows from Proposition 3, with pk ∈ ProjX(
∑m

m=1 ampm,k), and pm,k = θm,k 1Sm , that 2πm,k+1
:s −

θm,k
:s = 2(θm,k

:s + pk−pm,k

Sm )− θm,k
:s = θm,k

:s + 2 pk−pm,k

Sm . Therefore,

π̂m,k+1
:s = Proj∆R(qms )

(
θm,k
:s + 2

pk − pm,k

Sm
−

1

ρ
cm:s

)
∀ s,m.

Furthermore, the step θk+1 = θk + π̂k+1 − πk+1 in the DR algorithm boils down to

θm,k+1
:s = θm,k

:s + Proj∆R(qms )

(
θm,k
:s + 2

pk − pm,k

Sm
−

1

ρ
cm:s

)
− θm,k

:s −
pk − pm,k

Sm

= Proj∆R(qms )

(
θm,k
:s + 2

pk − pm,k

Sm
−

1

ρ
cm:s

)
−

pk − pm,k

Sm
, ∀ s,m.

Putting all together and removing the variables πk and π̂k we get the extension of MAM presented in
Algorithm 1.

Algorithm 1 Method of Averaged Marginals for Constrained WBs

1: Input: M empirical probability measures νm ∈ P(Rd), initial plan θm ∈ RR×Sm
, set X of constraints,

and a scalar ρ > 0

2: Define cmrs := 1
M
∥ξr − ζms ∥2, for all r = 1, . . . , R, s = 1, . . . , Sm and m = 1, . . . ,M

3: Set am := ( 1
Sm )/(

∑M
j=1

1
Sj ) and pm :=

∑Sm

s=1 θ
m
rs, m = 1, . . . ,M

4: while not converged do

5: p← ProjX(
∑M

m=1 ampm)

6: for m = 1, . . . ,M do
7: for s = 1, . . . , Sm do

8: θm:s ← Proj∆R(qms )

(
θm:s + 2 p−pm

Sm − 1
ρ
cm:s

)
− p−pm

Sm

9: end for
10: pm ←

∑Sm

s=1 θ
m
:s

11: end for

12: end while
13: return p

A possible manner to stop Algorithm 1 is when the barycenter estimate p stabilizes. As commented in
[20, §5], this should be seen as a heuristic stopping test. In the next result, we index the variables p and θ
in Algorithm 1 by k, which represents a pass between lines 4 and 12.

Theorem 4. Under Assumption 1, the sequence {(pk, θk)} produced by the Algorithm 1 converges to a
point (p̄, θ̄), with (p̄, ProjBX

(θ̄)) solving (8).

Proof. As presented, Algorithm 1 is the DR algorithm (10) applied to problem (9). As X ∩∆R ̸= ∅ in view
of Assumption 1, problem (9) has a solution, and thus Theorem 1 ensures that: {θk} converges to a point θ̄,
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with ProjBX
(θ̄) a solution to (9). Proposition 3, with the additional assumption of convexity of X, asserts

that

π̄m
:s = θ̄m:s +

p̄− p̄m

Sm
∀ s,m,

solves (9), where p̄m =
∑Sm

s=1 θ̄
m
:s . As

∑Sm

s=1 π̄
m
:s = p̄, for all m, the relation between problems (9) ensures

that (p̄, π̄) solves (8).

Remark 1. If X = RR, then Algorithm 1 boils down to the Method of Averaged Marginals of [20]. As in
that paper, we can also randomize our algorithm by performing, at every iteration, the projections on line 8
only for a single measure m chosen at random. In this randomized setting, the convergence results above
hold almost surely. This follows directly from the analysis in [20, Thm. 5.5].

While Algorithm 1 provides an exact manner for computing a constrained Wasserstein barycenter under
Assumption 1, its simplicity and decentralized nature encourage its application in the nonconvex setting. The
key insight is that if one can efficiently compute projections onto X, our approach could be (heuristically)
applied to problem (9) even when X is nonconvex. The following section provides numerical insights into
what can be obtained by Algorithm 1 in the convex and nonconvex settings.

3.2 Some Numerical Insights
This subsection presents some practical cases of why constrained WBs are worth considering. We compare
unconstrained WB, convex and nonconvex constrained WBs, all computed by Algorithm 1 with three dif-
ferent choices for X (being the first choice X = RR). In the first example, we consider a simple case of
a transportation problem with limited storage locations. In the second instance, a toy problem of image
processing is presented. The goal is to obtain a sparse barycenter that accurately represents the initial data.

3.2.1 Demand and Location Storage Localization

We consider a localization problem for demand and storage optimization. The dataset comprises demand
maps of a certain product for Paris over a 12-month period (one map per month). Figure 2 shows a sample
of nine out of the twelve months, with each map illustrating the aggregated product demand in red. The
objective is to determine optimal storage locations to minimize distribution costs.

Figure 2: Sample of 9 (out of 12) months of collected demand data: the aggregated product demand is represented
in red.
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First, let us compute an unconstrained Wasserstein barycenter of the demand maps. Such a barycenter,
presented in Figure 3a, suggests the need to rent 5726 storage facilities, which is impractical due to high
costs in certain areas. Therefore, we restrict the storage to eight affordable locations Lℓ (marked in red in

(a) Unconstrained WB with storage occupancy colorbar:
100% accounts for maximal ur capacity being reached. (b) Affordable areas are shown in red.

Figure 3: Unconstrained Barycenter of the demand maps and affordable storage locations.

Figure 3b) with capacities ur > 0 for all r ∈
{
j = 1, . . . , R : ξj ∈ ∪ℓ=1,...,8Lℓ

}
. As such restrictions yield

probability (in this case demand) pr = 0 for locations ξr outside the locations Lℓ, the problem can be recast
as a smaller Wasserstein problem with bound constraints given by the convex set:

X =

p : pr ≤ ur, ∀r s.t. ξr ∈
⋃

ℓ=1,...,8

Lℓ

 .

Projecting the unconstrained barycenter of Figure 3a (probability vector pu) onto the affordable areas
depicted in Figure 3b results in the map shown in Figure 4a. Unfortunately, this projection violates the
probabilistic nature of the barycenter, as the projected solution satisfies only 7% of the total demand:
ProjX(pu)⊤ 1R = 0.07. To address this mismatch, we integrate the affordability constraint directly into
the optimization problem to define problem (8), whose solution computed by Algorithm 1 is shown in

Figure 4b. This solution achieves 100% (
∑R

r=1 pr = 1) demand fulfillment while requiring only 625 storage
facilities. Notably, it identifies new high-utilization locations (e.g., three sites in the bottom-right corner
with approximately 40% occupancy).

(a) Unconstrained WB projected onto the set X. (b) Constrained WB computed by Algorithm 1.

Figure 4: Projected (unconstrained) WB versus constrained WB.

The (convex) constrained barycenter depicted in Figure 4b requires few storages in some locations Lℓ.
To maximize profitability, we introduce a nonconvex constraint that mandates a minimum storage utilization
of 40%. The new constraint set is as follows:

X =

p :
∑

r∈{j:ξj∈Lℓ}
pr ∈ {0} ∪ [0.4uℓ, uℓ] ℓ = 1, . . . , 8

 .
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Projecting the computed (convex constrained) barycenter onto this nonconvex set results in the allocation
shown in Figure 5a, fulfilling only 64% of the demand (the projected barycenter is not a probability mea-
sure). However, integrating this nonconvex constraint directly into the optimization problem yields a point
(Figure 5b) that satisfies 100% of the demand using only 308 storage facilities, compared to the 625 required
previously.

(a) Convex constrained WB projected onto the non-
convex set X.

(b) Nonconvex constrained barycenter computed by
Algorithm 1.

Figure 5: Projected convex constrained WB versus nonconvex constrained WB.

In summary, in this application, integrating constraints directly into the optimization process consistently
produces better results than applying constraints post hoc. By incorporating both convex and nonconvex
constraints, we achieve a practical solution that balances demand fulfillment and storage cost efficiency. We
remark that for the dataset composed by 12 images of size 100 × 100, Algorithm 1 computed each one of
the above (unconstrained, convex and nonconvex constrained) WBs within a couple of minutes, with none
taking significantly longer than the others.

3.3 Sparse Barycenter to a Set of Images
This subsection continues the discussion on the experiments presented in Figure 5 and evaluates Algorithm 1
in the context of nonconvex, constrained Wasserstein barycenter problems. We consider two test cases. In
the first case, we show that our algorithm performs effectively, even though it is a heuristic in the nonconvex
setting. The second test case illustrates a situation where the outcome produced by our approach is not
satisfactory. In both cases, we work with the nonconvex set forcing sparsity:

Xn = {p : ∥p∥0 ≤ n} .

Here, n is a given natural number.

Ellipses: We consider a sample of M = 100 images of size R = 60 × 60 with three nested ellipses.
Figure 6a shows 25 of these images. A naive strategy to obtain a sparse image summarizing the dataset is
first computing a unconstrained WB, and then projecting it onto Xn. This is exemplified in Figure 6b (the
two leftmost images) with n = 150. This strategy is clearly unsatisfactory. On the other hand, Algorithm 1
applied with X = X150 provides the rightmost image in Figure 6b, which clearly depicts three nested ellipses.
In this test, problem (9) has the order of 107 decision variables, and we let Algorithm 1 run 5000 iterations,
which took about five minutes on a personal computer.
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(a) Sample of 25 out of M = 100 images.
(b) Unconstrained WB, projection of the Uncon-
strained WB onto X150, and image provided by Al-
gorithm 1.

Figure 6: Sparse WB to a set of M = 100 images. The level of sparsity is chosen to be n = 150.

MNIST: In this experiment, we use as initial input the well-known MNIST database, which includes
R = 28×28 images of handwritten numbers. By considering two samples of M = 100 images for the numbers
three and five, we try to compute a sparse barycenter for each of the samples.

As in the previous example, we compare the computed unconstrained WB, its projection onto Xn, and
the point provided by Algorithm 1 with X = Xn. In this experiment, problem (9) has the order of 106

decision variables, and we let Algorithm 1 run 5000 iterations, which took only a couple of minutes. While
the unconstrained WB computed by MAM is meaningful, the sparse points provided by our approach fail
to be probability vectors, and their quality in terms of visual meaning is poor. As shown in Figure 7, the
projections of such points (including the unconstrained WB) onto Xn are not useful.

(a) Results for the number 3. (b) Results for the number 5.

Figure 7: Unconstrained, sparse, and projection onto the nonconvex set Xn, with n = 45 for the digit three
and n = 47 for the digit five.

These experiments demonstrate that while Algorithm 1 converges in a convex setting, its use as a heuris-
tic does not always yield satisfactory results. This observation supports the need for the mathematically
sound approach of the next section.

4 A Progressive Decoupling Approach
Algorithm 1 is (asymptotically) exact when the set X is convex. However, the lack of convergence guarantees
in the nonconvex case and the numerical illustration of the last section lead to question its use in some
applications where a nonconvex set X is deemed indispensable. For this reason, we investigate in this
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section a penalized model for the nonconvex constrained Wasserstein problem (9) and a tailored solving
methodology based on the Progressive Decoupling Algorithm (PDA) of Rockafellar [24]; see also [25, 29, 28].

Our initial, and unfruitful tentative, was to consider the following relaxed version of (9), with η > 0 a
penalty parameter:

min
π
⟨c, π⟩+

η

2
dist2BX

(π) s.t. πm ∈ Πm, m = 1, . . . ,M,

with dist2BX
(π) the squared distance of π from BX . More precisely,

dist2BX
(π) = min

θ∈BX

1

2
∥θ − π∥2 =

1

2
∥π∥2 − max

θ∈BX

{
⟨θ, π⟩ −

1

2
∥θ∥2

}
has a difference-of-convex (DC) structure: the two rightmost functions above are convex on variable π. As
a result, the above penalized model is a DC programming problem for which specialized algorithms exist
[11, 26]. However, in our experiments, the results provided by such a DC model were not particularly
appealing. This is why we propose to add the convex constraints

π ∈ B := BRR (see Eq. (9c))

to our DC model. The resulting and more involving optimization problem reads as follows:

min
π∈B
⟨c, π⟩+

η

2
dist2BX

(π) s.t. πm ∈ Πm, m = 1, . . . ,M. (16)

Observe that this problem consists of minimizing a DC function over a linear subspace B. Hence, any
solution π̄ to (16) is accompanied with a dual variable ȳ solving the linkage problem [24]:

find π̄ ∈ B and ȳ ∈ B⊥ such that ȳ ∈ T (π̄), (17)

with T (π) := ∂[⟨c, x⟩ +
∑

m iΠ(πm)] + η∂Cdist2BX
(π), and ∂C denoting the Clarke subdifferential. (This

linkage problem is nothing but an alternative way to write the Lagrange system yielding a Clarke stationary
point to (16).)

The work [24] investigates linkage problems and proposes the Progressive Decoupling Algorithm as a
solving methodology. PDA solves the linkage problem should monotonicity of T be elicitable at a certain
level. See also [29] and [25] for more details. However, being dist2BX

a DC function, monotonicity of T

above cannot be elicitable at any level, and thus the PDA of [24] is not directly applicable to our setting.
We refer the interest reader to [28, § 2.5] for more details. However, we can exploit the DC structure of
problem (16) using the method proposed in [28]. To this end, let us write the objective function of (16) as

f(π)− h(π), with


f(π) := ⟨c, π⟩+ η

2
∥π∥2

h(π) := η max
θ∈BX

{
⟨θ, π⟩ −

1

2
∥θ∥2

}
.

Recall that B⊥ is the normal cone (at every point) of the linear subspace B. Furthermore, note that
the subdifferential set ∂Ch(π) coincides with the projection ηProjBX

(π). The algorithm proposed in [28]

linearizes h at a reference point πℓk (stability center) and defines a new stability center by inexactly solving
the convex subproblem (see Algorithm 1 and Section 3.3 of [28]):

min
π∈B

f(π)− ⟨gℓk , π⟩+
µ

2
∥π − πℓk∥2 s.t. πm ∈ Πm, m = 1, . . . ,M.

Here, µ > 0 is a given parameter. Observe that such a subproblem is a quadratic variant of the unconstrained
Wasserstein barycenter problem (7). To get around the practical inconvenience of solving difficult convex
subproblems like this per iteration, the work [28] proposes to employ PDA with a safeguard permitting to
stop the algorithm as soon as an incumbent point to (16) is found. In this work, the employed safeguard is
a descent test accompanied by a penalty function associated to the constraints πm ∈ Πm. More specifically,
we apply the PDA to the above subproblem to generate a sequence {πk} until a trial point πk+1 satisfying
the following descent test is computed:

F (πk+1) ≤ F (πℓk )−
κ

2
vk,

with κ ∈ (0, 1
2
),

F (π) := f(π)− h(π) + Penalty
∑
m

distΠm (πm), Penalty > 0,

and vk ≥ 0 defined in Algorithm 2 below. When such a descent test is satisfied, we halt PDA, set πℓk+1 =
πk+1, compute a new subgradient gℓk+1 ∈ ηProjBX

(πℓk+1 ) to define the next subproblem, and repeat the
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process. Such a procedure can also be viewed as an inexact DC algorithm, where the convex subproblem
is addressed by PDA but not solved to optimality. Our approach to tackle the nonconvex Wasserstein
barycenter model (16) is presented in Algorithm 2.

Algorithm 2 Progressive decoupling algorithm for nonconvex WB problems

1: Input: M empirical probability measures νm ∈ P(Rd), initial primal and dual variables π ∈ B and
y0 ∈ B⊥, and scalars η, ρ > 0, κ ∈ (0, 1

2
), µ > 2κ and Penalty > 0

2: Define cmrs := 1
M
∥ξr − ζms ∥2, for all r = 1, . . . , R, s = 1, . . . , Sm and m = 1, . . . ,M

3: Set ℓ0 = 0, g0 ∈ ηProjBX
(π0) and am := ( 1

Sm )/(
∑M

j=1
1
Sj ), m = 1, . . . ,M

4: while not converged do
5: zk ← c− yk − gℓk − ρπk − µπℓk

6: for m = 1, . . . ,M do
7: for s = 1, . . . , Sm do

8: π̂k,m
:s ← Proj∆(qms )

[
− 1

η+ρ
zk,m:s

]
▷ Projection onto the simplex

9: end for
10: pk,m ←

∑Sm

s=1 π̂
k,m
:s

11: end for

12: pk+1 ←
∑M

m=1 ampk,m ▷ Barycenter of the current iterate

13: for m = 1, . . . ,M do
14: for s = 1, . . . , Sm do

15: πk+1,m
:s ← π̂k,m

:s + pk+1−pk,m

Sm ▷ Projection onto B
16: end for
17: end for

18: yk+1 ← yk − ρ(π̂k − πk)
19: vk ← max{∥πk+1 − πℓk∥2, ∥yk+1 − yk∥2, ∥πk+1 − πk∥2}

20: if F (πk+1) ≤ F (πℓk )− κ
2
vk then

21: ℓk+1 ← k + 1 ▷ Serious step

22: p̄ℓk+1 ← ProjX(pℓk+1 )

23: for m = 1, . . . ,M do
24: for s = 1, . . . , Sm do

25: g
ℓk+1,m
:s ← η

(
π
ℓk+1,m
:s + p̄

ℓk+1−p
ℓk+1

Sm

)
▷ A subgradient

26: end for
27: end for
28: else
29: ℓk+1 ← ℓk ▷ Null step
30: end if

31: end while
32: return pℓk+1

Remark 2. A few comments on Algorithm 2 are in order.

- Although steps 8, 15 and 25 all require equivalent loops over m and s, these loops cannot be merged,
as they require the previous computation of pk+1 and p̄ℓk+1 in steps 12 and 22, respectively. However,
all of those can be run in parallel over m and s, as none of the steps depend on a previous iteration
of the loop.

- If the descent test in step 20 holds for a given iterate ℓk+1 = k+1, the method requires computing a

subgradient of h (equivalently a projection onto BX) at πℓk+1 . This step needs the partial sums over
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s of πℓk+1 . Note that the following relation holds

Sm∑
s=1

π
ℓk+1,m
:s =

Sm∑
s=1

π̂k+1,m
:s + (pk+1 − pk,m) = pk+1,

so the partial sums of πℓk+1 (independent over m) are equal to pk+1, which is already computed at
line 12.

- Algorithm 2 is a specialization of the method of [28] to our setting. In addition to the problem’s
structure exploitation, we have considered the simplifications discussed in Subsection 3.3 of [28].

Theorem 5 ([28, Thm. 3.1]). Consider sequences {πk}k and {πℓk}k computed by Algorithm 2:

1. If only ℓ := ℓk serious steps are performed, then limk πk = π̃ where π̃ solves the problem

min
π∈B

f(π)− [h(πℓ) + ⟨gℓ, π − πℓ⟩] +
µ

2
∥π − πℓ∥2 , s.t. πm ∈ Πm ∀m = 1, . . . ,M. (18)

Moreover, if Penalty is big enough for Penalty
∑

m distΠm to be an exact penalty to problem (18),
then π̃ = πℓ solves the linkage problem (17).

2. If Algorithm 2 performs infinitely many serious steps, then every cluster point of {πℓk}k solves the
linkage problem (17)

Sparse Barycenter for MNIST: Let us return to the second test problem of Subsection 3.3, i.e,
the MNIST dataset. As shown by Figure 7, Algorithm 1 failed to provide a satisfactory sparse WB when
the nonconvex constraint Xn is considered in (9). By considering the model (16) and applying Algorithm 2
to that test problem we obtain the results depicted in Figure 8.

(a) Sparse WB for the number 3 with n = 45. (b) Sparse WB for the number 5 with n = 47.

Figure 8: Examples of two sparse WB computed with Algorithm 2.

Note that Figure 8 shows more satisfactory results than those displayed in Figure 7. However, Algo-
rithm 2 is significantly slower than Algorithm 1: Algorithm 2 performed 5000 iterations (for each example)
in about thirty minutes. Furthermore, the memory usage of Algorithm 2 is not as efficient as that of
Algorithm 1. These two drawbacks of Algorithm 2 should be addressed in future research.
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