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The (Discrete) Wasserstein Distance
We focus on discrete probability measures based on

finitely many R atoms supp(µ) := {ξ1, . . . , ξR}

finitely many S atoms supp(ν) := {ζ1, . . . , ζS},

i.e., the supports are finite and thus the measures are
given by

µ =
R∑

r=1

prδξr and ν =
S∑

s=1

qsδζs

The Wasserstein distance - discrete
setting
The 2-Wassestein distance between µ and ν is:

W (µ, ν) :=

(
min

π∈U(µ,ν)

R∑
r=1

S∑
s=1

∥ξr − ζs∥2πrs

)1/2

with

U(µ, ν) :=

{
π ≥ 0

∣∣∣∣ ∑R
r=1 πrs = qs, s = 1, . . . , S∑S
s=1 πrs = pr, r = 1, . . . , R

}
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The (Discrete) Wasserstein Distance

Let ξ, ζ : Ω → Rd be two random vectors having probability measures µ and ν:

ξ ∼ µ and ζ ∼ ν

We focus on discrete measures based on

finitely many R atoms supp(µ) := {ξ1, . . . , ξR}

finitely many S atoms supp(ν) := {ζ1, . . . , ζS},

i.e., the supports are finite and thus the measures are given by

µ =
R∑

r=1

prδξr and ν =
S∑

s=1

qsδζs

The Wasserstein distance - discrete setting
The ι-Wassestein distance between two discrete probability measures µ and ν is:

Wι(µ, ν) :=

(
min

π∈U(µ,ν)

R∑
r=1

S∑
s=1

∥ξr − ζs∥ιιπrs

)1/ι

with

U(µ, ν) :=

{
π ≥ 0

∣∣∣∣ ∑R
r=1 πrs = qs, s = 1, . . . , S∑S
s=1 πrs = pr, r = 1, . . . , R

}
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Given θ ∈ RR×
∑M

m=1 Sm
, let am :=

1
Sm∑M

j=1
1

S(j)

be weights, pm :=
∑Sm

s=1 θ
m
rs the

mth marginal, p :=
∑M

m=1 ampm the average of marginals

Proposition (First DR’s step)

The projection π = ProjB(θ) has the explicit form:

πm
rs = θmrs +

(pr − pmr )

Sm
, s = 1, . . . , Sm, r = 1, . . . , R, m = 1, . . . ,M

Proposition (Second DR’s step)

The proximal mapping π̂ = argmin πm∈Πm

m=1,...,M

∑M
m=1⟨dm, πm⟩+ ρ

2
∥π − y∥2 can be

computed exactly, in parallel along the columns of each transport plan ym, as
follows: for all m ∈ {1, . . . ,M}, π̂m

1s
...

π̂m
Rs)

 = Proj∆R(qms )


y1s − 1

ρ
dm1s

...
yRs − 1

ρ
dmRs

 , s = 1, . . . , Sm

Here, ∆R(τ) =
{
x ∈ RR

+ :
∑R

r=1 xr = τ
}
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Convergence Analysis

Theorem (MAM’s convergence analysis)

▶ (Deterministic.) MAM asymptotically computes a balanced (unbalanced)
Wasserstein barycenter should the measures be balanced (unbalanced)

▶ (Randomized.) MAM computes almost surely a balanced (unbalanced)
Wasserstein barycenter should the measures be balanced (unbalanced)
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Special setting: grid-structured data

▶ All measures share the same finite support: suppose that all measures ν(m)

are supported on a d-dimensional regular grid of integer step sizes in each
direction, each coordinate going from 1 to K: S(m) = S = Kd, and
supp(ν(m)) := {ζ1, . . . , ζS}, m = 1, . . . ,M

▶ The measures are evenly weighted αm = 1
M

, m = 1, . . . ,M

▶ Then supp(µ) has at most

R ≤ ((K − 1)M + 1)d

points, as the finer grid only runs between the boundary points [1]

This significantly reduces the LP’s dimension

1S. Borgwardt, S. Patterson (2020). INFORM J. Optimization



2-Wasserstein distance setting

Example (LP’s dimensions)

Consider the case: M = 10, d = 2, K = 40 ⇒ S = 1600

data |supp(µ)| # variables # eq. constraints
R (MS + 1)R (S +R)M

general 1.0995 · 1032 1.7593 · 1036 1.0995 · 1033
grid-structured 152881 2.4462 · 109 1544810

▶ In contrast to the worst-case, exponentially sized possible support set, there
always exists a WB µ̄ with provably sparse support

|supp(µ̄)| ≤
M∑

m=1

S(m) −M + 1

▶ For the above example |supp(µ̄)| ≤ 15991

▶ This fact motivates heuristics for computing inexact WBs: fixed-support
approaches, which generally fix R to

∑M
m=1 S

(m) −M + 1 (or fewer) points



Exact free-support resolution

The dataset we use is the one from [2]: M = 10 images of 60× 60 pixels

LP’s dimension: 1.2574 · 1010 variables and 3.5288 · 106 constraints
We compare with the dedicated solver of Altschuler and Boix-Adsera, available at [3]

Evolution of the approximated MAM barycenter with time in regards with the exact
barycenter of the Altschuler and Bois-Adsera algorithm computed in 3.5 hours [4]

MAM can solve larger problems than the method Altschuler and Boix-Adsera

2J. M. Altschuler and E. Boix-Adsera. JMLR (2021)
3https://github.com/eboix/high_precision_barycenters
4S. Borgwardt, S. Patterson (2020). INFORM J. Optimization
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The optimal value of the WB problem is 0.2666

After 1 hour of processing, MAM had a barycenter distance of 0.2702, which improved to

0.2667 after 3.5 hours, when the solver of Altschuler and Boix-Adsera halts
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Prospects - Unbalanced WB

▶ A new approach, very useful in the optimal transport community.


min
π

M∑
m=1

⟨dm, π
m⟩ + γdistB(π)

s.t. π
1 ∈ Π

m
, . . . , π

M ∈ Π
M

▶ Detailed in the SIAM publication.
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Unbalanced Wasserstein barycenters

Linear subspace of balanced plans:

B =

π :
S1∑
s=1

π1
rs = · · · =

SM∑
s=1

πM
rs , r = 1, . . . , R


νm, m = 1, . . . ,M , have equal masses

Balanced WB



min
π∈B

M∑
m=1

⟨dm, πm⟩

s.t. π1 ∈ Πm

...

πM ∈ ΠM

νm, m = 1, . . . ,M , have different masses

Unbalanced WB (γ > 0)



min
π

M∑
m=1

⟨dm, πm⟩+ γ distB(π)

s.t. π1 ∈ Πm

...

πM ∈ ΠM

MAM can be easily adapted to deal with both balanced and unbalanced WBs

Evaluating the proximal operator of distB(π) amounts to projecting onto B
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MAM unbalanced
Unbalanced Wasserstein barycenter

Algorithm
1: Input: initial plan π = (π1, . . . , πm) and parameters ρ, γ > 0

2: Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

3: while not converged do

4: p←
∑M

m=1 ampm ▷ Average the marginals

5: Set t← 1 if ρ

√∑M
m=1

∥p− pm∥2
Sm ≤ γ; else t← γ/

(
ρ

√∑M
m=1

∥p− pm∥2
Sm

)
6: for m = 1, . . . ,M do
7: for s = 1, . . . , Sm do

8: πm
:s ← Proj∆(qms )

(
πm
:s + 2t p−pm

Sm − 1
ρ
dm:s

)
− t p−pm

Sm

9: end for
10: pm ←

∑Sm

s=1 πm
rs ▷ Update the mth marginal

11: end for

12: end while

Set γ = ∞ to compute balanced WB (if the measures are balanced)
Otherwise, choose γ ∈ (0,∞) to compute unbalanced WB



Constrained Wasserstein barycenters

Suppose the probability vector p is constrained to a closed convex set X ⊂ RR:

min
p,π≥0

M∑
m=1

⟨dm, π
m⟩

s.t.
R∑

r=1

π
m
rs = q

m
s , s = 1, . . . , S

m
, m = 1, . . . ,M

Sm∑
s=1

π
m
rs = pr, r = 1, . . . , R, m = 1, . . . ,M

p ∈ X

▶ If X is convex, MAM can be easily extended to compute constrained WB

▶ If X is nonconvex, MAM is no longer convergent

Our proposal: Difference-of-Convex (DC) model



min
p,π≥0

M∑
m=1

⟨dm, π
m⟩ + γ dist

2
X (p)

s.t.
R∑

r=1

π
m
rs = q

m
s , s = 1, . . . , S

m
, m = 1, . . . ,M

Sm∑
s=1

π
m
rs = pr, r = 1, . . . , R, m = 1, . . . ,M
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Constrained Wasserstein barycenters5



min
p≥0,π∈B

M∑
m=1

⟨dm, π
m⟩

s.t. π1 ∈ Π1, . . . , πM ∈ ΠM

p ∈ X

▶ If X is convex, MAM can be
easily extended to compute
constrained WB;

▶ If X is nonconvex, MAM is no
longer convergent. We
proposed a
difference-of-convex extension.

Sparse barycenter of 10 images 28× 28 with X := {p ∈ RR : ∥p∥0 ≤ n}

5Joint work with Gregorio M. Sempere, Mines Paris PSL
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MAM constrained
Constrained setting

Algorithm
1: Input: initial plan π = (π1, . . . , πm) and parameter ρ > 0

2: Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

3: while not converged do

4: p← ProjX

(∑M
m=1 ampm

)
▷ Average the marginals

5: for m = 1, . . . ,M do
6: for s = 1, . . . , Sm do

7: πm
:s ← Proj∆(qms )

(
πm
:s + 2 p−pm

Sm − 1
ρ
dm:s

)
− p−pm

Sm

8: end for
9: pm ←

∑Sm

s=1 πm
rs ▷ Update the mth marginal

10: end for

11: end while



Sparse Wasserstein barycenters

Let X := {p ∈ RR : ∥p∥0 ≤ n}


min
p≥0,π∈B

M∑
m=1

⟨dm, π
m⟩ + γ dist

2
X (p)

s.t. π1 ∈ Π1, . . . , πM ∈ ΠM

Barycenter of 10 images 28× 28

Joint work with Gregorio M. Sempere, Mines Paris PSL
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Distance between processes

▶ Two stage trees can be
represented as discrete
probability measures.

For example if supports are 1D:

µ = q1δξ1 + q2δξ2 + q3δξ3 + q4δξ4

ν = p1δξ′1
+ p2δξ′2

+ p3δξ′3

▶ Multi stage trees have filtration.

We need an extension of the Wasserstein distance to random processes.
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Nested distance vs Wasserstein distance 1/2

14



Nested distance vs Wasserstein distance 2/2

▶ The Wasserstein distance: the trees are
two scenarios. Here,

T1 : ξ
1
T1

= (2, 2, 1), ξ
2
T1

= (2, 2, 3),

and

T2 : ξ
1
T2

= (2, 2−ε, 1), ξ
2
T2

= (2, 2+ε, 3).

The squared Euclidean distance matrix
between these scenarios is then(

ε2 ε2 + 4

ε2 + 4 ε2

)
.

The optimal transport plan:(
1− p 0

0 p

)
.

Therefore, we obtain

W2(T1, T2) = ε −−−→
ε→0

0.

▶ The nested distance : The d-distance at
first stage is 0. At the middle stage is
given by (

ε2

ε2

)
,

and at the final stage by(
ε2 ε2 + 4

ε2 + 4 ε2

)
.

Then the transport plan at the middle
stage: (

1− p
p

)
,

and at the final stage:(
(1− p)2 (1− p)p

(1− p)p p2

)
.

Therefore,

ND2(T1, T2) = 2ε
2(

1+p(1−p)
)
+8p(1−p)

−−−→
ε→0

8p(1− p).

▶ W2(T1, T3) = 1 and W2(T2, T3) = 1− ε, means that, as ε→ 0, the trees T2 and T3
become equidistant from T1.

▶ ND2(T1, T3) = 2 + 10p(1− p), and ND2(T2, T3) = 2(1− ε)2.
15



Stability Results for ND

Stability result for the ND
Consider the value function val(H) of stochastic optimization problem seen earlier
so that val(H) := val(ξH), and L2 a constant, then it holds6:

|val(H)− val(G)| ≤ L2 · dl2(H,G)2 (1)

▶ It is not the case when using the WD.

6See Pflug and Pichler 2012
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Probability Optimization in the KP algorithm

Given the stochastic process quantizers {ξ′(n) ∈ Ξ : n ∈ N ′} and structure of
(N ′, A′), we are looking for the optimal probability measure P ′ to approximate
P :=(ΞT+1,F , P ), regarding the nested distance.

Large non-convex optimization problem

min
π,P ′

∑
i∈NT ,j∈N ′

T

π(i, j)dιi,j

s.t.
∑

j∈n+
π(i,j)
π(m,n)

= P (i|m), (∀m ∈ A(i), n)

∑
i∈m+

π(i,j)
π(m,n)

= P ′(j|n), (∀n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1

P ′(j|j−) ≥ 0.

(2)

▶ This is a bilinear problem

▶ There is a large number of decision variables and bilinear constraints.
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From Bilinear to Recursive Problem

▶ π(i, j) = π(i, j|m,n)× π(m,n),

▶ δι(m,n) :=
∑

i∈m+,j∈n+ π(i, j|m,n)δι(i, j) for m ∈ Nt, n ∈ N ′t ,
▶ δι(i, j) = dι(ξi, ξ

′
j)

ι =: dιi,j for the leaves i, j of the trees.

∑
i∈NT ,j∈N ′

T

π(i, j)dιi,j =
∑

i∈NT ,j∈N ′
T

π(i, j)δι(i, j) (3a)

=
∑

i∈NT ,j∈N ′
T

∑
m∈i−,n∈j−

π(i, j|m,n)π(m,n)δι(i, j) (3b)

=
∑

n∈N ′
T−1

∑
m∈NT−1

π(m,n)
∑

i∈m+,j∈n+

π(i, j|m,n)δι(i, j)︸ ︷︷ ︸
δι(m,n)

(3c)

=
∑

n∈N ′
T−1

∑
m∈NT−1

π(m,n)δι(m,n). (3d)

Evaluate the ND recursively
δι(0, 0) = ND(P,P′)
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From a large LP to an Optimal Transport Problem

The recursive problem (RP) is a Wasserstein Barycenter problem.

Given t ∈ {1, . . . , T} and n ∈ N ′t , problem (RP) reads as:



min
π

∑
m∈Nt

π(m,n)
∑

i∈m+,j∈n+ π(i, j|m,n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m,n) = P (i|m), (i ∈ m+)∑
i∈m+ π(i, j|m,n) =

∑
i∈m̃+ π(i, j|m̃, n), (j ∈ n + and m, m̃ ∈ Nt)

π(i, j|m,n) ≥ 0.

(RP)

▶
∑

i∈m+ π(i, j|m,n) = P ′(j|n) for j ∈ n+, for all m = m1, . . . ,mM .
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From a large LP to an Optimal Transport Problem

The recursive problem (RP) is a Wasserstein Barycenter problem.

Given t ∈ {1, . . . , T} and n ∈ N ′t , problem (RP) reads as:

min
P ′,π

π(m1, n)
∑

i∈m1+,j∈n+

π(i, j|m1, n)δι(i, j) + · · ·+ π(mM , n)
∑

i∈mM+,j∈n+

π(i, j|mM , n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m1, n) = P (i|m1), (i ∈ m1+)

.
. .

.

.

.∑
j∈n+ π(i, j|mM , n) = P (i|mM ), (i ∈ mM+)∑

i∈m1+ π(i, j|m1, n) = P ′(j|n), (j ∈ n+)

. .
.

.

.

.∑
i∈mM+ π(i, j|mM , n) = P ′(j|n), (j ∈ n+)

∑
j∈n+ P ′(j|n) = 1, π(i, j|m1, n) ≥ 0 · · · π(i, j|mM , n) ≥ 0,

(WB)

▶
∑M

i=1 π(mi, n) = 1 per definition. Kovacevic and Pichler fix π(m,n) with the
values computed from the previous iteration.
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From a large LP to an Optimal Transport Problem
The recursive problem (RP) is a Wasserstein Barycenter problem.

Given t ∈ {1, . . . , T} and n ∈ N ′t , problem (RP) reads as:



min
P ′,π

α
n
1

∑
i∈m1+,j∈n+

π(i, j|m1, n)δι(i, j) + · · ·+ αn
M

∑
i∈mM+,j∈n+

π(i, j|mM , n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m1, n) = P (i|m1), (i ∈ m1+)

.
.
.

.

.

.∑
j∈n+ π(i, j|mM , n) = P (i|mM ), (i ∈ mM+)∑

i∈m1+ π(i, j|m1, n) = P ′(j|n), (j ∈ n+)

.
.
.

.

.

.∑
i∈mM+ π(i, j|mM , n) = P ′(j|n), (j ∈ n+)

∑
j∈n+ P ′(j|n) = 1, π(i, j|m1, n) ≥ 0 · · · π(i, j|mM , n) ≥ 0,

(WB)

This is a Wasserstein barycenter problem, with:

▶ The right constraints on mass conservation,

▶ The left constraints on unicity of the barycenter.
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The Method of Averaged Marginals

MAM algorithm
Input: Initial plan π = (π1, . . . , πm) and parameter ρ > 0
Set Sm ←| supp(qm) |, for m = 1, . . . ,M

Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

Set Dm ← αm (δι(i, j))(i,j)∈m+×n+ and set qm = (P (i|m))i∈m+

while not converged do

p←
∑M

m=1 ampm ▷ Average the marginals

for m = 1, . . . ,M do
for s = 1, . . . , Sm do

πm
:s ← Proj∆(qms )

(
πm
:s + 2 p−pm

Sm − 1
ρ
Dm

:s

)
− p−pm

Sm

end for
pm ←

∑Sm

s=1 πm
rs ▷ Update the mth marginal

end for

end while

22



The Iterative Bregman Projection

IBP algorithm
Input: Given αm for m = 1, . . . ,M , λ > 0, initialize v0 and u0 with an arbitrary positive
vector, for example 1S Initialize p0, for example 1R/R
Set Dm ← αm (δι(i, j))(i,j)∈m+×n+ and set qm = (P (i|m))i∈m+

Define Km = e−λDm
for all m = 1, . . . ,M

while not converged do
▷ Projections onto the constraints

for m=1,. . . ,M do

vm,k+1 = qm

(Km)T um,k

um,k+1 = pk+1

Kmvm,k+1

end for

▷ Approximation of the barycenter

pk+1 =
∏M

m=1(K
mvm,k+1)αm

end while

return πm = diag(um)Kmdiag(vm) for all m = 1, . . . ,M
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Impact of the tree structure

Influence of the tree structure on the

computation time of a stage, depending on the

method in use: MAM in green and LP in

orange.

Influence of the tree structure on the

computation time for small n.
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Impact of the tree structure

Speed comparison with IBP for different λ: A positive time difference means the method is

faster than LP. Each curve is obtained by averaging the ND accuracy over

n ∈ {2, 4, 6, 8, 10, 12, 14, 16}.

Average influence of λ in the precision. Each curve is obtained by averaging the ND accuracy

over n ∈ {2, 4, 6, 8, 10, 12, 14, 16}.
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Impact of the initialization in the tree reduction

▶ Kmeans method, starting from 100 scenarios it creates 25 clusters using the
Euclidean norm, and then computes the 25 corresponding barycenters;

▶ Fast Forward Selection (FFS) method, introduced by Heitsch and Römisch7.
The method iteratively selects scenarios that minimize the Wasserstein
distance to the remaining scenarios. At each step, the scenario that best
approximates the distribution is added to the reduced set until the desired
number of 25 scenarios is reached, ensuring an efficient yet effective reduction.

Comparison of the ND to the original tree before and after tree reduction using different

initialization techniques.

▶ Detailed in the Annals of Operations Research publication.

7Computational Optimization and Applications (2003)
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Decision Process for Scenario Based Methods

The control algorithm, where Consmeas,PVmeas denote, respectively, the electric consumption
and photovoltaic production measured at the meter.
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Cross validations on a 60 days period

Cross validation VSP

Cross validation DRO
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Reduction tree and stoch. optim.

▶ For this specific application the reduction tree via KP was not the most
effective approach;

▶ For other applications it can!
▶ Also in more general cases, the reduction tree would be more efficient in these

cases:
▶ When we trust the scenario generator enough, for example when predicting

temperature (for a building...);
▶ When uncertainties are present in the dynamics of the system.
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Performance Ratio

We define four criteria to help explain the differences in model performance, where
Pd := −min(ρdP

meas
b , 0) and Pc := max(Pmeas

b /ρc, 0):

▶ Autoproduction gain ratio:

PG =

100×
∫
min{Pd(t),Consmeas(t)− PVmeas(t)}1C1 (t)dt∫

Consmeas(t)dt
. (4)

Where, C1 : PVmeas(t) < Consmeas(t).

▶ Autoconsumption gain ratio:

CG = 100×
∫
max{Pc(t),PVmeas(t)− Cons}1C2 (t)dt∫

PVmeas(t)dt
.

Where, C2 : PVmeas(t) > Consmeas(t).
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Performance Ratio

▶ Discharging error ratio:

DE =

100×
∫
(Pd(t)− (Consmeas(t)− PVmeas(t)))1C3 (t)dt∫

Consmeas(t)dt
.

Where, C3 : PVmeas(t) < Consmeas(t) and Consmeas(t)− PVmeas(t) < Pd(t).

▶ Grid charging ratio:

GC =

100×
∫
(Pc(t)− (PVmeas(t)− Consmeas(t)))1C4 (t)dt∫

PVmeas(t)dt
.

Where, C4 : PVmeas(t) > Consmeas(t) and PVmeas(t)− Consmeas(t) < Pc(t).
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Performance Ratio

Table: Evaluation of models according to four performance criteria. Values in
parentheses indicate the percentage difference relative to MPC.

Method CG PG

DSP 1.2900 (49.7%) 1.4437 (12.2%)
VSP 0.9248 (7.3%) 1.3086 (1.7%)
RL 0.9189 (6.6%) 1.1824 (-8.1%)
MPC 0.8620 (0.0%) 1.2867 (0.0%)
DRO 0.8850 (2.7%) 1.2715 (-1.2%)
SP 0.8811 (2.1%) 1.2883 (0.1%)

Method DE GC

DSP 0.0378 (-65.3%) 2.1109 (-9.8%)
VSP 0.0783 (-28.1%) 2.2602 (-3.4%)
RL 0.0649 (-40.5%) 2.0080 (-14.2%)
MPC 0.1090 (0.0%) 2.3400 (0.0%)
DRO 0.1135 (4.1%) 2.2927 (-2.0%)
SP 0.1223 (12.2%) 2.3593 (+0.8%)
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