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THE (DISCRETE) WASSERSTEIN DISTANCE
We focus on discrete probability measures based on
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THE (DISCRETE) WASSERSTEIN DISTANCE
Let &,¢ : © — R? be two random vectors having probability measures ;o and v:
E~p and (~v
We focus on discrete measures based on
finitely many R atoms supp(ss) = {&1, ., €r}
finitely many S atoms supp(v) := {¢1,...,¢s},

i.e., the supports are finite and thus the measures are given by
R S

= Zpyﬁgr and v = quégs

r=1 s=1

SSERSTEIN DISTANCE - DISCRETE SETTING

The (-Wassestein distance between two discrete probability measures p and v is:

1/c
Wa(u,v) = ( min ZZH& 43'“”)

eU(pw) T =1

with

U(uu)::{ﬂ>o‘ Z =17rs =ds, $=1...,8 }

s 17rrs—p7‘7 r=1,...,R
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PROPOSITION (FIRST DR’S STEP)

The projection ™ = Projgz(0) has the explicit form:
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M . .
Given 6 € REXXm=—1 Sm, let ap, == szil be weights, p™ := ;9:1 07 the
J s(9)

m" marginal, p := Zﬁ\n,:l amp™ the average of marginals

PROPOSITION (FIRST DR’S STEP)

The projection ™ = Projgz(0) has the explicit form:

(pr — PI7)
Sm ’

m _ om
777‘5_97‘5—"_

s=1,....,8, r=1,...,.R, m=1,.... M

PROPOSITION (SECOND DR’S STEP)

The prozimal mapping # = arg min ;m cpm Z%=1<dm,ﬂm> + &llr - y||? can be
m=1,...,M

computed exactly, in parallel along the coiumns of each transport plan y™, as
follows: for allm € {1,..., M},

o 1 m
AT Yis — 5dis
:ProjAR(qgn) , s=1,...,8™
- 1
7"%) YRs — ;dﬂR,LS

Here, Ag(T) = {a: eRE: SE oz = ’T}



CONVERGENCE ANALYSIS

THEOREM (MAM’S CONVERGENCE ANALYSIS)

» (Deterministic.) MAM asymptotically computes a balanced (unbalanced)
Wasserstein barycenter should the measures be balanced (unbalanced)

» (Randomized.) MAM computes almost surely a balanced (unbalanced)
Wasserstein barycenter should the measures be balanced (unbalanced)



SPECIAL SETTING: GRID-STRUCTURED DATA

» All measures share the same finite support: suppose that all measures (")
are supported on a d-dimensional regular grid of integer step sizes in each
direction, each coordinate going from 1 to K: $(™) =S = K9 and

supp(v(™) := {¢1,...,Cs},m=1,...,M

» The measures are evenly weighted oy, = ﬁ, m=1,...,M
» Then supp(p) has at most
R<((K—-1)M +1)4

points, as the finer grid only runs between the boundary points [!]

This significantly reduces the LP’s dimension '

1g. Borgwardt, S. Patterson (2020). INFORM J. Optimization



2-WASSERSTEIN DISTANCE SETTING

ExAaMPLE (LP’S DIMENSIONS)

Consider the case: M =10,d =2, K =40 = S = 1600

data [supp ()| # variables | # eq. constraints
R (MS+1)R (S+R)M
general 1.0995 - 103% | 1.7593 - 103 1.0995 - 1033
grid-structured 152881 2.4462 - 10° 1544810

» In contrast to the worst-case, exponentially sized possible support set, there
always exists a WB [ with provably sparse support

M
lsupp(z)| < > S — M +1

m=1

> For the above example |supp(iz)| < 15991

» This fact motivates heuristics for computing inexact WBs: fixed-support
approaches, which generally fix R to Z%[:l S(m) — M +1 (or fewer) points



EXACT FREE-SUPPORT RESOLUTION

The dataset we use is the one from [?]: M = 10 images of 60 x 60 pixels
LP’s dimension: 1.2574 - 10' variables and 3.5288 - 10° constraints
‘We compare with the dedicated solver of Altschuler and Boix-Adsera, available at [3]

k = 20.0, t=0.04h k = 350.0, t=1.0h k = 700.0, t=2.0h k = 1040.0, t=3.0h k = 1390.0, t=4.0h
.
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- (O)
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k = 1740.0, t=5.0h k = 2080.0, t=6.0h k = 2430.0, t=7.0h k = 2780.0, t=8.0h k = 3120.0, t=9.0h 300

4 100 200 300 400 500

Evolution of the approximated MAM barycenter with time in regards with the exact
barycenter of the Altschuler and Bois-Adsera algorithm computed in 3.5 hours [4]

MAM can solve larger problems than the method Altschuler and Boi dsera '

2J. M. Altschuler and E. Boix-Adsera. JMLR (2021)
Shttps://github. com/eboix/high_precision_barycenters
4s. Borgwardt, S. Patterson (2020). INFORM J. Optimization



https://github.com/eboix/high_precision_barycenters
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After 1 hour of processing, MAM had a barycenter distance of 0.2702, which improved to
0.2667 after 3.5 hours, when the solver of Altschuler and Boix-Adsera halts



ProspeEcTS - UNBALANCED WB

> A new approach, very useful in the optimal transport community.

= o

M
rnﬂin E (d™, m™) 4+ ~vdistg(m)
m=1
s.t. WIEHm,H.,ﬂA/{GHJW
v= 0001 v=1 v=10 v= 50 v=710 v= 200 v= 300 y= 500 v= 1000

@ (C) @
®©e 060 ~ e

s

» Detailed in the SIAM publication.




UNBALANCED WASSERSTEIN BARYCENTERS

Linear subspace of balanced plans:

Sl
B=<m: Z nl, =
s=1
v™ m=1,...,M, have equal masses
Balanced WB
M
min dm, ™
min > (d™, 7"
m=1
st.  wbelm
M c HIVI

oM
_ M _
75 T, T=1,...,R
s=1
v™ m=1,..., M, have different masses

Unbalanced WB (v > 0)

M
. m _m .
min Z(d , ") + ydistp(m)
m=1
st. wlel™
ﬂ_]W c HIW

MAM can be easily adapted to deal with both balanced and unbalanced WBs '

Evaluating the proximal operator of distp(m) amounts to projecting onto B



MAM UNBALANCED

UNBALANCED WASSERSTEIN BARYCENTER

ALGORITHM

1: Input: initial plan 7 = (7', ..., 7"") and parameters p,v > 0
m
2: Define a, + (ﬁ)/(zjlvil S%) and set p™ + Zle my,m=1,...,M

3: while not converged do

4: P 2%:1 amp™ > Average the marginals
M2 M2
5:  Sett <« 1if p\/SSM_, ”ps# < v else t « v/ (,, sy e . Il )
6: for m=1,..., M do
s for s=1,...,8™ do
m m
8: i (—ProjA(qm)(ﬂTg+2t%— };dTE)_tPE%
: 7 : :
9: end for
10: P 25:1 Ty > Update the m?"” marginal
11: end for

12: end while

Set v = oo to compute balanced WB (if the measures are balanced)
Otherwise, choose v € (0, 00) to compute unbalanced WB



CONSTRAINED WASSERSTEIN BARYCENTERS

Suppose the probability vector p is constrained to a closed convex set X C R

k< m—1
R

s.t Zw:;:q;", s=1, , 8™, =1, M
r=1
gm
At =pr, r=1,...,R,m=1,...,M
s=1
peEX

> If X is convex, MAM can be easily extended to compute constrained WB

» If X is nonconvex, MAM is no longer convergent

OUR PROPOSAL: DIFFERENCE-OF-CONVEX (DC) MODEL

M
min 2 @, ™y 4y dist:;( (p)
P20 T

R
s.t. Zﬂ:‘;:q;ﬂ', s=1,...,8", m=1,...,M
r=1

Sm
Salt=pr, r=1,...,R, m=1,...,M
s=1



CONSTRAINED WASSERSTEIN BARYCENTERS®

M » If X is convex, MAM can be
min Z (d™, x™) easily extended to compute
p20,m€B I constrained WB;
s.t. ~tent, ... aMenaM » If X is nonconvex, MAM is no

longer convergent. We

peX proposed a

difference-of-convex extension.

Sparse barycenter of 10 images 28 X 28 with X := {p € R . [lpllg < n}

Convex model DC model
5 5
-
10 = 10 ]
15 15 |
20 — 20 :'
25 25 -L
5§ 10 15 20 25 5 10 15 20 25
Projection onto X with n=34 Projection onto X with n=34
5 5 oy
—_ -
10 10 -
15 i 15 | ]
20 ; 20 :'
25 25 -L
5 10 15 20 25 5 10 15 20 25

5 Joint work with Gregorio M. Sempere, Mines Paris PSL



MAM CONSTRAINED

CONSTRAINED SETTING

ALGORITHM

1: Input: initial plan = = (7', ..., 7") and parameter p > 0
2: Define a, + (ﬁ)/(zﬁil S%) and set p"" <+ Zf;nl i, m=1,...,M

3: while not converged do
4: P + Projy (E%:l ampm) > Average the marginals

for m=1,..., M do

for s=1,...,8™ do
—_pm —,m
71':7;1 (—ProjA(q;n)(Tr:T 7‘»217551 — ldm) — psﬂl

p s
end for
P Zf:l e > Update the m!" marginal

,_\
VO N O wm

i

1: end while



SPARSE WASSERSTEIN BARYCENTERS

Let X := {p e RE: Iplly <=}

Barycenter of 10 images 28 x 28
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Joint work with Gregorio M. Sempere, Mines Paris PSL
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DISTANCE BETWEEN PROCESSES

> Two stage trees can be
represented as discrete
probability measures.

For example if supports are 1D:
probability

.
quf-

B

& £ &y location

a4 a'é &'

p=a18gy +a20¢; +asdey + aadey > Multi stage trees have filtration.

v = p155/1 + p25§/2 +p355é

We need an extension of the Wasserstein distance to random processes.



NESTED DISTANCE VS WASSERSTEIN DISTANCE 1/2




Ty

» The Wasserstein distance: the trees are

two scenarios. Here,
1 2
Ty: &p =(2,2,1), &1 =(2,2,3),

and

To: €p, = (2,2-5,1), &7, = (2,2+4¢,3).

The squared Euclidean distance matrix
between these scenarios is then

52 52 + 4
2414 2 :
The optimal transport plan:
1—p 0
0 p)’
Therefore, we obtain

Wy(Ty,T2) = —— 0.
e—0

NESTED DISTANCE VS WASSERSTEIN DISTANCE 2/2

o

» The nested distance : The d-distance at

first stage is 0. At the middle stage is

given by
62
e2)”

and at the final stage by

e? 52+4
e2 14 e2 :

Then the transport plan at the middle

stage:
( )
P ?

and at the final stage:
((1 -p? 7219)19) )
(I =p)p I3
Therefore,
NDg(T1, Tp) = 2¢% (14p(1—p)) +8p(1—p)
— 8p(1 — p).
e—0

> Wy (Ty,T3) =1 and Wa(T2,T3) = 1 — €, means that, as € — 0, the trees Ty and T3

become equidistant from T3 .

> NDy(T1,T3) =2+ 10p(1 — p), and ND (T2, T3) = 2(1 — £)2.



STABILITY RESULTS FOR ND

STABILITY RESULT FOR THE ND

Consider the value function val(H) of stochastic optimization problem seen earlier
so that val(H) := val(¢é), and Lo a constant, then it holds®:

[val(H) — val(G)| < Ly - dlo(H, G)? (1)

> It is not the case when using the WD.

6See Pflug and Pichler 2012



PROBABILITY OPTIMIZATION IN THE KP ALGORITHM

Given the stochastic process quantizers {¢'(n) € E: n € N’} and structure of
(N7, A”), we are looking for the optimal probability measure P’ to approximate
P :=(ET*1, F, P), regarding the nested distance.

LARGE NON-CONVEX OPTIMIZATION PROBLEM

. N2
min > (i)

iENT,JEN]

st Yient W’;ﬁf;){f) = P(ilm), (Vm € A(i),n)

Tiems 2 = P(jln),  (Yn € AG),m)

4,5 2 0 and Zi,j 4,5 = 1

P'(jlj=) = 0.

» This is a bilinear problem

» There is a large number of decision variables and bilinear constraints.



FroMm BILINEAR TO RECURSIVE PROBLEM

> 7(i,j) = (i, jlm,n) x w(m,n),
> 0u(myn) =3t jeny T(5 JIm, )0 (4, 5) for m € Ni,n e N,
> 6,(i,5) = db(fi,ﬁé-)b =:d; ; for the leaves i, j of the trees.

> wgai; = > w(i,5)8.36.5) (3a)

ieNT,JEN] i€ENT,JEN]

Z Z (i, jlm,n)m(m,n)d,(i,7) (3b)

iENT,JEN], MEi—,n€j—

> Soowltmen) > @i, dlm,n)d, 5)

nEJ\/‘,}il meNT T _1 i€Em+,jEn+

&, (m,n)

(3¢c)
> > w(m,n)d(m,n). (3d)

neN_; mENT_1

EVALUATE THE ND RECURSIVELY
6.(0,0) = ND(P, P’)




FrROM A LARGE LP TO AN OPTIMAL TRANSPORT PROBLEM

The recursive problem (RP) is a Wasserstein Barycenter problem.

I ——
Given ¢t € {1,...,T} and n € N/, problem (RP) reads as:

mﬂin er},é/\/’tﬂ(mﬂ n) Ei€m+,j€n+ (4, jlm, n)é, (i, 5)
s.t. Yjent (i, dlm,n) = P(ilm), (i € m+)

Ziem+ (3, jlm, n) = Zig,;H, (i, jlm, n), (j € n+ and m,m € Ny)

m (4, jlm,n) > 0.
(RP)

> D iema ™ jlm,n) = P’ (j|n) for j € n+, for all m = my,...,mypy.



FrROM A LARGE LP TO AN OPTIMAL TRANSPORT PROBLEM

The recursive problem (RP) is a Wasserstein Barycenter problem.

Given ¢t € {1,...,T} and n € N/, problem (RP) reads as:

min 7 (my,n) > (i, jlm1,n)8.(4,5) +---+ w(mar,n) > m (i, jlmar, n
Plym i€mi+,jEnt i€mpr+,i€En+t
st Yjeny (i dlmy,n) = P(ilm1), (i € m1+)
Yjent m(idlmar, n) = P(i|lmar), (i € mpr+)
Yiemy+ 7@ jlm1, n) = P'(j|n), (J € n+t)
Siemp+ 70 dlmar, n) = P'(jIn), (j € nt)
Yient P'(GIn) = 1,73, jlm1,n) > 0 w(i,jlmar, n) 2 0,
(WB)

> Ef\il m(m;,n) =1 per definition. Kovacevic and Pichler fix w(m,n) with the
values computed from the previous iteration.

20



FrROM A LARGE LP TO AN OPTIMAL TRANSPORT PROBLEM
The recursive problem (RP) is a Wasserstein Barycenter problem.

1 —
Given ¢t € {1,...,T} and n € N/, problem (RP) reads as:

min  af > w(i,jlm1,n)8.(3,3)  +---+ ol > m (i, jlmar, n)8. (i, g
10 g i€mq+,jEn+ i€mpr+,jEnt
s.t. Z_j671,+ (i, jlm1,n) = P(i|lm1), (1 € m1+)
>jent m(i dlmar, n) = P(i|lmpr), (i € mar+)
Zzem]+7"(isj‘mlv”) = P/(jIn), (j € n+)
Yiemp+ 7@ dlmar, ) = P'(j|n), (j € n+)
Yient P'(GIn) = 1,7(5,jlm1,n) 20 - (i, jlmar, n) > 0,

(WB)

This is a Wasserstein barycenter problem, with:
» The right constraints on mass conservation,
» The left constraints on unicity of the barycenter.

21



THE METHOD OF AVERAGED MARGINALS

MAM ALGORITHM

Input: Initial plan © = (7', ..., 7"™) and parameter p > 0

Set 8™ «| supp(¢"™) |, for m =1,..., M

Define ame(ﬁ)/(zﬁl S%) and set p"™ <—ES_1 e, m=1,...,M
Set D™ «+ ayy (5L(i7j))(i,j)€m+><n+ and set ¢ = (P(l|m))iem+

while not converged do
P < E%:l amp™ > Average the marginals

for m=1,..., M do
for s =1,...,8™ do

m m
m . m b—p 1pm pP—p
Ty (—Pro_]A(q;n)(ﬂ':s + 2 S — ED:S) —

Sm
end for
P 25:1 g > Update the mth marginal

end while

22



THE ITERATIVE BREGMAN PROJECTION

IBP ALGORITHM

Input: Given ay, for m = 1,..., M, X > 0, initialize 2% and u® with an arbitrary positive
vector, for example 1g Initialize p?, for example 1r/R

Set D™ <+ am (6L(i7j))(i,j)em+><n+ and set ¢ = (P(i|m)); 4

Define K™ = ¢~ 2P forallm=1,..., M

while not converged do

> Projections onto the constraints
for m=1,...,M do

ookl g™
(K™)T ym,k

um,k+1 — Pk+1
T Kmam,k+1

end for
> Approximation of the barycenter
pk+1 — l—[rﬂr/{zl(Kmvm,k+1)ocnl

end while

return 7" = diag(u"")K™diag(v"™) foral m =1,..., M

23



IMPACT OF THE TREE STRUCTURE

computation time (s)

0
InF] w0 .

Influence of the tree structure on the
computation time of a stage, depending on the
method in use: MAM in green and LP in

orange.

computation time (s)

G 0 %0 360 W0
In+l

Influence of the tree structure on the

computation time for small n.
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IMPACT OF THE TREE STRUCTURE

100 200 300

Computation time difference with LP (%
|
&
3

400 500 600
In+|

100 200 300
In+|

Speed comparison with IBP for different A\: A positive time difference means the method is

faster than LP. Each curve is obtained by averaging the ND accuracy over

n € {2,4,6,8,10,12, 14, 16}.
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Average influence of X\ in the precision. Each curve is obtained by averaging the ND accuracy

over n € {2,4,6,8,10,12, 14, 16}.



IMPACT OF THE INITIALIZATION IN THE TREE REDUCTION

> Kmeans method, starting from 100 scenarios it creates 25 clusters using the
Euclidean norm, and then computes the 25 corresponding barycenters;

» Fast Forward Selection (FFS) method, introduced by Heitsch and Rémisch?.
The method iteratively selects scenarios that minimize the Wasserstein
distance to the remaining scenarios. At each step, the scenario that best
approximates the distribution is added to the reduced set until the desired
number of 25 scenarios is reached, ensuring an efficient yet effective reduction.

Scenario set | Filtrations | initial ND | reduced ND

1 Kmeans 2757 1219

FFS 1384 658
2 Kmeans 1699 1092

FFS 1936 896
3 Kmeans 1653 832
i FFS 1499 716
1 Kmeans 1858 963

FFS 1161 566
- Kmeans 1968 1054
° FFS 917 510

Comparison of the ND to the original tree before and after tree reduction using different

initialization techniques.

> Detailed in the Annals of Operations Research publication.

7Computational Optimization and Applications (2003)
26



DECISION PROCESS FOR SCENARIO BASED METHODS

Process 1 Decision process for scenario-based methods

Every day do

From Cons™* and PV™™" on
past AT, generate L scenarios

!

+ Select S scenarios with FES
« Improve the reduced set with KP (optional)

!

Compute Py with a scenario-based
algorithm (DSP, SDAP, RPHA...)

|
— )y

[ Measure Cons™*(t) and PV™*(t) ]

!

Using the filtration A, Cons™*(¢),
and PV™®(¢) to select the optimal
P; and apply decision Py (¢ + A)

The control algorithm, where Cons™¢®% PV™€a5 denote, respectively, the electric consumption
and photovoltaic production measured at the meter.

27



CROSS VALIDATIONS ON A 60 DAYS PERIOD

Cross validation VSP

Cross validation DRO
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REDUCTION TREE AND STOCH. OPTIM.

> For this specific application the reduction tree via KP was not the most
effective approach;

» For other applications it can!

> Also in more general cases, the reduction tree would be more efficient in these
cases:
P> When we trust the scenario generator enough, for example when predicting
temperature (for a building...);
» When uncertainties are present in the dynamics of the system.

29



PERFORMANCE RATIO

We define four criteria to help explain the differences in model performance, where
Py := —min(pg P***%,0) and P, := max(P**/p.,0):

» Autoproduction gain ratio:
PG =

J min{Py(t), Cons™?5(t) — PV™e3S(¢)} ¢, (¢)dt
100 % J Cons™e2s(t)dt - @

Where, C; : PV™¢?5(¢) < Cons™°?5(t).
> Autoconsumption gain ratio:

o6 — 100  J max{Pe(B), PV™ (1) — Cons}ic, (t)dt
[ PV™ens (4)dt '

Where, Ca : PV™¢?5(¢t) > Cons™°?5(t).




PERFORMANCE RATIO

> Discharging error ratio:

DE =
J (Pa(t) = (Cons™**(2) — PV™3(1))) ey (¢)dt

100 x
J Cons™es(¢)d¢

Where, C3 : PV™¢?5(t) < Cons™°%(t) and Cons™®?S(t) — PV™e5(t) < Py(t).

» Grid charging ratio:

GC =
J(Pe(t) — (PV™eas(t) — Cons™e5(¢)))1c, (t)dt‘

100 x
JPV™meas(g)dg

Where, C4 : PV™€8S(£) > Cons™®35(£) and PV™ea5 () — Cons™®25(t) < Py (t).



PERFORMANCE RATIO

TABLE: Evaluation of models according to four performance criteria. Values in

parentheses indicate the percentage difference relative to MPC.

Method CG PG

DSP 1.2900 (49.7%)  1.4437 (12.2%)
VSP 0.9248 (7.3%) 1.3086 (1.7%)
RL 0.9189 (6.6%) 1.1824 (-8.1%)
MPC 0.8620 (0.0%) 1.2867 (0.0%)
DRO 0.8850 (2.7%) 1.2715 (-1.2%)
SP 0.8811 (2.1%) 1.2883 (0.1%)
Method DE GC

DSP 0.0378 (-65.3%) 2.1109 (-9.8%)
VSP 0.0783 (-28.1%) 2.2602 (-3.4%)
RL 0.0649 (-40.5%)  2.0080 (-14.2%)
MPC 0.1090 (0.0%) 2.3400 (0.0%)
DRO 0.1135 (4.1%) 2.2927 (-2.0%)
SP 0.1223 (12.2%) 2.3593 (+0.8%)
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