

Computing Wasserstein Barycenter via Operator Splitting: the Method of Averaged Marginals

Daniel Mimouni*+

Joint work with: Paul Malisani*, Jiamin Zhu*, Welington de Oliveira⁺

> *IFP Energies nouvelles *Mines Paris, PSL

Table of contents

I. Motivations

I.1. Applications

II. Background on Discrete Optimal Transport

II.1. Wasserstein Distance

II.2. Wasserstein Barycenter (WB)

III. The Method of Averaged Marginals (MAM)

III.1. Reformulation of the LP

- III.2. Douglas-Rachford (DR) theory
- III.3. Algorithm

IV. Applications

- IV.1. Qualitative comparison
- IV.2. Quantitative comparison
- IV.3. Influence of the support
- IV.4. Unbalanced Wasserstein Barycenter

I. Motivations

I.1. Applications

<u>Clustering :</u>

kmeans Clustering

(a) Comparison of Wasserstein-Spectral clustering, spectral clustering, and k-means on Two-Circles dataset and Moons dataset [2]

Data preprocessing :

Comparison between Euclidean (left) and Optimal Transport (right) barycenters between two densities, one being a translated and scaled version of the other. Colors encode the progression of the interpolation. The Euclidean interpolation results in mixtures of the two initial densities, while Optimal Transport results in a progressive translation and scaling [3]

Visualization :

(Top) 30 artificial images of two nested random ellipses. Mean measures using the (a) Euclidean distance (b) Euclidean after re-centering images (c) Jeffrey centroid (Nielsen, 2013) (d) RKHS distance (Gaussian kernel, σ = 0.002) (e) 2-Wasserstein distance. [1] II. Background on Discrete Optimal Transport II.1. Wasserstein distance

the ι -Wasserstein distance $W_{\iota}(\mu, \nu)$

$$\label{eq:othermalized} \Box \mathtt{T}_{\Xi,Z}(p,q) := \begin{cases} \min_{\pi \ge 0} & \sum_{r=1}^R \sum_{s=1}^S \mathtt{d}(\xi_r,\zeta_s)^{\iota} \pi_{rs} \\ \text{s.t.} & \sum_{r=1}^R \pi_{rs} = q_s, \qquad s = 1,\ldots,S \\ & \sum_{s=1}^S \pi_{rs} = p_r, \qquad r = 1,\ldots,R \end{cases}$$

π	$egin{array}{ccc} x_1 & x_2 \ 0.4 & 0.1 \end{array}$		$\begin{array}{c} x_3 \\ 0.3 \end{array}$	$egin{array}{c} x_4 \ 0.2 \end{array}$	
$y_1 0.3$	0.3	0	0	0	
$y_2 0.4$	0.1	0.1	0.2	0	
$y_3 0.3$	0	0	0.1	0.2	

<u>Recall:</u> $\Delta_n(\tau) := \left\{ u \in \mathbb{R}^n_+ : \sum_{i=1}^n u_i = \tau \right\}$

II. Background on Discrete Optimal Transport II.1. Wasserstein distance

the ι -Wasserstein distance $W_{\iota}(\mu, \nu)$

finitely many R scenarios $\Xi := \{\xi_1, \dots, \xi_R\}$ for ξ and $S^{(m)}$ scenarios $Z^{(m)} := \{\zeta_1^{(m)}, \dots, \zeta_{S^{(m)}}^{(m)}\}$ for $\zeta^{(m)}, m = 1, \dots, M$, i.e., measures of the form $\mu = \sum_{r=1}^R p_r \delta_{\xi_r}$ and $\nu^{(m)} = \sum_{s=1}^{S^{(m)}} q_s^{(m)} \delta_{\zeta_s^{(m)}}, m = 1, \dots, M$, with δ_u the Dirac unit mass on $u \in \Omega, p \in \Delta_R$, and $q^{(m)} \in \Delta_{S^{(m)}}, m = 1, \dots, M$. $\operatorname{OT}_{\Xi,Z}(p,q) := \begin{cases} \min_{\pi \ge 0} & \sum_{r=1}^R \sum_{s=1}^S \operatorname{d}(\xi_r, \zeta_s)^{\iota} \pi_{rs} \\ \text{s.t.} & \sum_{r=1}^R \pi_{rs} = q_s, \\ & \sum_{s=1}^S \pi_{rs} = p_r, \end{cases}$ $s = 1, \dots, S$ II. Background on Discrete Optimal Transport II.2. Wasserstein Barycenter (WB)

General formulation of the WB problem:

M $\min_{\Xi, p \in \Delta_R} \sum_{m=1} \alpha_m \mathsf{OT}_{\Xi, Z^{(m)}}(p, q^{(m)})$

II. Background on Discrete Optimal Transport II.2. Wasserstein Barycenter (WB)

General formulation of the WB problem:

M $\min_{\Xi, p \in \Delta_R} \sum_{m=1}^{\infty} \alpha_m \mathsf{OT}_{\Xi, Z^{(m)}}(p, q^{(m)})$

Block coordinate optimization:

• Step 1: support optimization \longrightarrow Straightforward solution exists if $\iota = 2$ (Euclidean norm) $\min_{\Xi} \sum_{m=1}^{m} \alpha_m OT_{\Xi,Z^{(m)}}(p^k, q^{(m)})$

• Step 2: probability optimization
$$\longrightarrow \min_{p \in \Delta_R} \sum_{m=1}^M \alpha_m \operatorname{OT}_{\Xi, Z^{(m)}}(p, q^{(m)})$$

Repeat until convergence.

Recall: $\mathsf{OT}_{\Xi,Z}(p,q) := \begin{cases} \min_{\pi \ge 0} & \sum_{r=1}^{m} \sum_{s=1}^{m} \mathsf{d}(\xi_r, \zeta_s)^{\iota} \pi_{rs} \\ \text{s.t.} & \sum_{r=1}^{R} \pi_{rs} = q_s, \qquad s = 1, \dots, S \\ \sum_{s=1}^{S} \pi_{ss} = p_{ss}, \qquad r = 1, \dots, R. \end{cases}$ II. Background on Discrete Optimal Transport II.2. Wasserstein Barycenter (WB) – LP Formulation WB problem written as a huge-scale LP: $\min_{p,\pi} \sum_{r=1}^{R} \sum_{s=1}^{S^{(1)}} d_{rs}^{(1)} \pi_{rs}^{(1)} + \dots + \sum_{r=1}^{R} \sum_{s=1}^{S^{(M)}} d_{rs}^{(M)} \pi_{rs}^{(M)}$ s.t. $\sum_{r=1}^{R} \pi_{rs}^{(1)} = q_s^{(1)},$ \vdots – Barycentric distance $\begin{array}{ccc} & = q_s^{(1)}, & s = 1, \dots, S^{(1)} \\ \vdots & & \\ & \sum_{r=1}^R \pi_{rs}^{(M)} = q_s^{(M)}, & s = 1, \dots, S^{(M)} \end{array} \begin{array}{c} \text{Set of constraints on the } q^{(m)} \\ & \Pi^{(m)} \coloneqq \left\{ \pi^{(m)} \ge 0 : \sum_{r=1}^R \pi_{rs}^{(m)} = q_s^{(m)}, s = 1, \dots, S^{(m)} \right\} \end{array}$ $= p_r, \qquad r = 1, \dots, R$ \vdots $\sum_{s=1}^{S^{(M)}} \pi_{rs}^{(M)} = p_r, \qquad r = 1, \dots, R$ Set of constraints on p $\sum_{s=1}^{S^{(m)}} \pi_{rs}^{(m)} = \sum_{s=1}^{S^{(m)}} \pi_{rs}^{(m')}, \quad m, m' = 1, \dots, M$ $\sum_{s=1}^{S^{(1)}} \pi_{rs}^{(1)}$ ÷., $p \in \Delta_R, \pi^{(1)} \ge 0 \quad \cdots \qquad \pi^{(M)} \ge 0$

II. Background on Discrete Optimal Transport II.2. Wasserstein Barycenter (WB) - <u>Previous works</u>

II. Background on Discrete Optimal Transport II.2. Wasserstein Barycenter (WB) - <u>Reformulation</u>

$$\mathcal{B} := \left\{ \pi = (\pi^{(1)}, \dots, \pi^{(S)}) \middle| \begin{array}{l} \sum_{s=1}^{S^{(1)}} \pi_{rs}^{(1)} &= \sum_{s=1}^{S^{(2)}} \pi_{rs}^{(2)}, \quad r = 1, \dots, R\\ \sum_{s=1}^{S^{(2)}} \pi_{rs}^{(2)} &= \sum_{s=1}^{S^{(3)}} \pi_{rs}^{(3)}, \quad r = 1, \dots, R\\ \vdots \\ \sum_{s=1}^{S^{(M-1)}} \pi_{rs}^{(M-1)} &= \sum_{s=1}^{S^{(M)}} \pi_{rs}^{(M)}, \quad r = 1, \dots, R \end{array} \right\}$$

III. The Method of Averaged Marginals (MAM) III.1. Reformulation of the LP

Reformulation of the problem:

3.0

1.
$$f^{(m)}(\pi^{(m)}) := \sum_{r=1}^{R} \sum_{s=1}^{S^{(m)}} d_{rs}^{(m)} \pi_{rs}^{(m)} + \mathbf{i}_{\Pi^{(m)}}(\pi^{(m)})$$

2.
$$f(\pi) := \sum_{m=1}^{M} f^{(m)}(\pi^{(m)})$$
 and $g(x) := \mathbf{i}_{\mathcal{B}}(\pi)$

3.
$$\min_{\pi} f(\pi) + g(\pi)$$

find π such that $0 \in \partial f(\pi) + \partial g(\pi)$

New problem : finding the zero of the sum of two maximal monotone operators

- \rightarrow Several methods exist
- → <u>Douglas-Rachford operator splitting</u> is the most popular one (see ADMM or progressive hedging methods)

III. The Method of Averaged Marginals (MAM) III.2. Douglas-Rachford (DR) theory

Douglas-Rachford steps:

given initial point $\theta^0 = (\theta^{(1),0}, \dots, \theta^{(M),0})$ and prox-parameter $\rho > 0$:

$$\begin{cases} \pi^{k+1} = \operatorname{pros}_{g/\rho}(\theta^k) \xrightarrow{\operatorname{Projection onto} \mathcal{B} \text{ is explicit}} \pi^{k+1} = \operatorname{Proj}_{\mathcal{B}}(\theta^k) \\ \hat{\pi}^{k+1} = \operatorname{pros}_{f/\rho}(2\pi^{k+1} - \theta^k) \xrightarrow{\operatorname{Projections onto} \text{ the simplex}} \\ \theta^{k+1} = \theta^k + \hat{\pi}^{k+1} - \pi^{k+1} \xrightarrow{\operatorname{Projections onto} \text{ the simplex}} \\ \hat{\pi}^{(m)}_{ls} := \left\{ u \in \mathbb{R}^n_+ : \sum_{i=1}^n u_i = \tau \right\}} \xrightarrow{\left\{ u \in \mathbb{R}^n_+ : \sum_{i=1}^n u_i = \tau \right\}} \operatorname{Proj}_{\Delta_R(q_s^{(m)})} \begin{pmatrix} y_{1s} - \frac{1}{\rho} d_{1s}^{(m)} \\ \vdots \\ y_{Rs} - \frac{1}{\rho} d_{Rs}^{(m)} \end{pmatrix}}, s = 1, \dots, S^{(m)}$$

III. The Method of Averaged Marginals (MAM) III.3. Algorithm - <u>Main steps</u>

Step 1: Given a multi-transportation plan θ^k

- Marginals $p^{(m),k} = \theta^{(m),k}$ 1, m = 1, ..., M
- p^k is a weighted average of $\{p^{(1),k}, \dots, p^{(M),k}\}$

Step 2: Given θ^k , p^k and distance matrices

• Compute a multi-transportation plan π^k by performing $\sum_{m=1}^{M} S^{(m)}$ independent projections onto the simplex Δ_R

Step 3: Givent θ^k , p^k and π^k

- Compute θ^{k+1} by a straightforward operation
- Set k = k + 1 and repeat

III. The Method of Averaged Marginals (MAM)

III.3. Algorithm - Feelings and philosophy

	Algorithm 5.1 Method of Averaged Marginals - MAM	
	5	
	$\triangleright \text{ Step 0: input}$	
	1: Given $\rho > 0$, the distance matrix and initial point $d, \theta^0 \in \mathbb{R}^{R \times \sum_{m=1}^{M} S^{(m)}}$, and $a \in \Delta_M$	
	as in (5.3a), set $k \leftarrow 0$ and $p_r^{(m)} \leftarrow \sum_{s=1}^{S^{(m)}} \theta_{rs}^{(m),0}, r = 1, \dots, R, m = 1, \dots, M$	
	2: Set $\gamma \leftarrow \infty$ if $q^{(m)} \in \mathbb{R}^{S^{(m)}}_+$, $m = 1, \ldots, M$, are balanced; otherwise, choose $\gamma \in (0, \infty)$	
	3: while not converged do	
	4: Compute $p^k \leftarrow \sum_{m=1}^M a_m p^{(m)}$ \triangleright Step 1: average the marginals	
Unbalanced formulation	5: Set $t^k = 1$ if $\rho \sqrt{\sum_{m=1}^M \frac{\ p^k - p^{(m)}\ ^2}{S^{(m)}}} \le \gamma$; otherwise, $t^k \leftarrow \gamma / \left(\rho \sqrt{\sum_{m=1}^M \frac{\ p^k - p^{(m)}\ ^2}{S^{(m)}}}\right)$	
Can be executed in norallel or randomized	6: Choose an index set $\emptyset \neq \mathcal{M}^k \subseteq \{1, \dots, M\}$	
Can be executed in parallel or randomized	7: for $m \in \mathcal{M}^k$ do	
	8: for $s = 1, \dots, S^{(m)}$ do Step 2: update the m^{th} plan	
	9: Define $w_r \leftarrow \theta_{rs}^{(m),k} + 2t^k \frac{p_r^k - p_r^{(m)}}{S^{(m)}} - \frac{1}{\rho} d_{rs}^{(m)}, r = 1, \dots, R$	Projection onto the simplex performed
	10: Compute $(\hat{\pi}_{1s}^{(m)}, \dots, \hat{\pi}_{Rs}^{(m)}) \leftarrow \operatorname{Proj}_{\Delta_R(q_s^{(m)})}(w)$	Projection onto the simplex performed exactly by using efficient methods
	11: Update $\theta_{rs}^{(m),k+1} \leftarrow \hat{\pi}_{rs}^{(m)} - t^k \frac{p_r^k - p_r^{(m)}}{S(m)}, r = 1, \dots, R$	\longrightarrow Projection onto ${\cal B}$
	12: end for	
	\triangleright Step 3: update the m^{th} marginal	
	13: Update $p_r^{(m)} \leftarrow \sum_{s=1}^{S^{(m)}} \theta_{rs}^{(m),k+1}, r = 1, \dots, R$	
	14: end for	
	15: end while	
	16: Return $\bar{p} \leftarrow p^k$	
l		

IV. Applications IV.1. Qualitative comparison

MAM	IBP
Exact algorithm	 Iterative Bregman Projection state-of-the-art algorithm for WB based on an entropic regularization of the problem thus computes inexact WB

3	3	ટ	3	5	3
3	3	3	3	૭	3
3	3	3	3	3	3
3	3	3	3	3	3
3	З	3	З	3	3
Э	3	3	3	З	3
45941,	t=500.0	i = 112, i = 1197, i = 2155, i = 4066,	t=500.0 t=1000.0	Exact	WB

≁

4

4

IV. Applications

IV.2. Quantitative comparison

IV. Applications IV.3. Influence of the support

Union of the dataset support

IV. Applications

IV.4. Unbalanced Wasserstein Barycenter

Dataset composed by 50 pictures with nested ellipses randomly positionned in the top left, bottom right and left corners :

٩	0	• •	© ©	6	0 0	0 0	۲	0 0 0	00
٩	ଚ୍ଚ	0 0	\odot	<i>©</i> ()	00	00	0	0	0
۲	\odot	0	୍	0 0	0 0	\odot	6 0	0	0 0
©	0	٢	00	٩	0	\odot	(b) (c)	0	0 9 0
0 0 0	୍ଦ ତ	0 0	0 0	0 0	٢	۰	٢	() ()	@ 0

The standard (balanced) WB is not always the best tool for summarizing:

Conclusion and future works

What have been introduced?

A novel approach for computing Wasserstein barycenters of discrete measures, that:

→Asymptotically exact
→Embarrassingly parallelizable and can be used on a randomized manner (almost surely convergence)
→Can tackle both the balanced and unbalanced case!

What can be done now?

→Adapt MAM to tackle scenario trees reduction problem in stochastic optimization
 →Real life examples

References

[1] Cuturi, M., & Doucet, A. (2014, June). Fast computation of Wasserstein barycenters. In *International conference on machine learning* (pp. 685-693). PMLR

[2] Bonneel, N., Peyré, G., & Cuturi, M. (2016). Wasserstein barycentric coordinates: histogram regression using optimal transport. *ACM Trans. Graph.*, *35*(4), 71-1.

[3] El Hamri, M., Bennani, Y., & Falih, I. (2022). Hierarchical optimal transport for unsupervised domain adaptation. *Machine Learning*, *111*(11), 4159-4182.

[4] Mimouni, D., Malisani, P., Zhu, J., & de Oliveira, W. (2023). Computing Wasserstein Barycenter via operator splitting: the method of averaged marginals. *arXiv preprint arXiv:2309.05315*.