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I. Motivations

I.1. Applications

(Top) 30 artificial images of two nested random ellipses.

Mean measures using the (a) Euclidean distance (b) Euclidean 

after re-centering images (c) Jeffrey centroid (Nielsen, 2013) (d)

RKHS distance (Gaussian kernel, 𝜎= 0.002) (e) 2-Wasserstein

distance. [1]
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Visualization :Clustering : Data preprocessing :

Comparison between Euclidean (left) and Optimal Transport (right) barycenters 

between two densities, one being a translated and scaled version of the other. Colors 

encode the progression of the interpolation. The Euclidean interpolation results in 

mixtures of the two initial densities, while Optimal Transport results in a progressive 

translation and scaling [3]
(a) Comparison of Wasserstein-Spectral clustering, 

spectral clustering, and k-means on Two-Circles 

dataset and Moons dataset [2]
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II. Background on Discrete Optimal Transport 

II.1. Wasserstein distance
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II. Background on Discrete Optimal Transport 

II.1. Wasserstein distance
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Recall:
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II. Background on Discrete Optimal Transport 

II.2. Wasserstein Barycenter (WB)
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General formulation of the WB problem:

Support optimization Probability optimization
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II. Background on Discrete Optimal Transport 

II.2. Wasserstein Barycenter (WB)
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Block coordinate optimization:

• Step 1: support optimization

• Step 2: probability optimization

Repeat until convergence.

Straightforward solution exists if 𝜄 = 2 (Euclidean norm)

General formulation of the WB problem:
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II. Background on Discrete Optimal Transport 

II.2. Wasserstein Barycenter (WB) – LP Formulation
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WB problem written as a huge-scale LP:

Set of constraints on the 𝑞(𝑚)

Set of constraints on 𝑝

Barycentric distance

Recall:
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II. Background on Discrete Optimal Transport 

II.2. Wasserstein Barycenter (WB) - Previous works
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Two alternatives:

i) Inexact methods via entropic regularization

ii) Exact decomposition methods via solving 

smaller and simpler problems

Iterative Bregman Projection (IBP) - 2013

Bregman ADMM (B-ADMM) - 2017

Iterative Swapping Algorithm (ISA) - 2020

ADMM – 2010

ISA in certain configurations - 2020

How to compute ? Solving the huge LP has limits : scalability, time consuming
Exact solution

Exact solution ?

approximation

Tends to an exact 

solution but low 

numerical efficiency
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II. Background on Discrete Optimal Transport 

II.2. Wasserstein Barycenter (WB) - Reformulation
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III. The Method of Averaged Marginals (MAM)

III.1. Reformulation of the LP
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Reformulation of the problem: 

1.

2.

3.

New problem : finding the zero of the sum of two maximal monotone operators

→ Several methods exist

→ Douglas-Rachford operator splitting is the most popular one (see ADMM or progressive hedging methods)



Projection onto     is explicit
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III. The Method of Averaged Marginals (MAM)

III.2. Douglas-Rachford (DR) theory
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Projections onto the simplex

Douglas-Rachford steps: 
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III. The Method of Averaged Marginals (MAM)

III.3. Algorithm - Main steps
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III. The Method of Averaged Marginals (MAM)

III.3. Algorithm - Feelings and philosophy

Daniel Mimouni

Unbalanced formulation 

Projection onto the simplex performed 

exactly by using efficient methods

Projection onto 

Can be executed in parallel or randomized
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IV. Applications

IV.1. Qualitative comparison
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MAM IBP

Exact algorithm Iterative Bregman Projection

• state-of-the-art algorithm for 

WB

• based on an entropic 

regularization of the problem 

thus computes inexact WB
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IV. Applications

IV.2. Quantitative comparison 
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IV. Applications

IV.3. Influence of the support 
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Union of the dataset support
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IV. Applications

IV.4. Unbalanced Wasserstein Barycenter 
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Dataset composed by 50 pictures with nested ellipses randomly 

positionned in the top left, bottom right and left corners :

The standard (balanced) WB is not always the best tool for 

summarizing:

Balanced WB
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Conclusion and future works
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What have been introduced?

A novel approach for computing Wasserstein barycenters of discrete measures, that:

→Asymptotically exact

→Embarrassingly parallelizable and can be used on a randomized manner (almost surely convergence)

→Can tackle both the balanced and unbalanced case! 

What can be done now?

→Adapt MAM to tackle scenario trees reduction problem in stochastic optimization

→Real life examples
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