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I. Multistage Stochastic Optimization Problem
Context
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Some Context

▶ Renewable energy integration challenges: Unlike fossil fuels, renewable power
generation is variable and weather-dependent, making grid stability more
complex.

▶ Demand-side flexibility as a solution: Adapting consumer energy use to
match real-time conditions helps optimize renewable energy use but requires
advanced management systems.

▶ Optimization-based management systems: Stochastic optimization techniques
enable effective scheduling and resource allocation in uncertain conditions,
essential for integrating renewables.
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Optimization Model for Energy Management

Battery
Cons

PV

Pb(t)

The effective power demand:

ft := Pm(t) = Cons− PV+
1

ρc
max{Pb(t), 0}+ ρd min{Pb(t), 0} (1)

The stage-wise cost function:

ct(Pm(t), Pb(t), (Cons,PV)) = pbr(t)max{Pm(t), 0}+ psr(t)min{Pm(t), 0} (2)

Optimization problem
Multistage stochastic optimization problem:

min
u1

c1(x1, u1, ξ1) + min
u2

Eξ2

[
c2(x2, u2, ξ2) + · · ·+min

uT
EξT [cT (xT , uT , ξT )]

]
(3)

Under the following constraints:

xt+1 = ft(xt, ut, ξt), t = 1, . . . , T − 1 (4a)

(ut, xt) ∈ Kt ⊂ Rm × Rn, t = 1, . . . , T (4b)

x1 = x0, (4c)
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Resolution methods

▶ MPC solves deterministic optimization problem at each time step thus does
not use the statistical properties of the future random variables, potentially
yielding far from sub-optimal decisions.

▶ SDDP is a sequential decomposition method, that needs strong assumption
like stage-wise independence.

▶ PHA is a scenario decomposition techniques that decomposes the problem per
scenario while keeping the whole time horizon in individual (scenario-based)
subproblems.

In practice, the scenario process {ξt} is approximated by a scenario tree
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Reducing Trees

▶ For statistical representativity, the scenario tree should be large

▶ For computation tractability, the scenario tree should be small

How to Compare Trees?
The Nested Distance

▶ Has good stability results1.

▶ Takes filtration into account.

1See Pflug and Pichler 2012
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Distance between processes

Two stage trees can be represented as discrete
probability measures.

Three stage trees have filtration.

Let empirical (discrete) measures being defined like:

supp(ν) := {ξ1, . . . , ξS} and ν =
S∑

s=1

qsδξs . (5)

The Wasserstein distance
The ι-Wassestein distance between two discrete probability measures µ and ν is:

Wι(µ, ν) :=

(
min

π∈U(µ,ν)

R∑
r=1

S∑
s=1

∥ξr − ξ′s∥
ι
ι
πrs

)1/ι

with

U(µ, ν) :=

{
π ≥ 0

∣∣∣∣ ∑R
r=1 πrs = qs, s = 1, . . . , S∑S
s=1 πrs = pr, r = 1, . . . , R

}
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Distance between processes
Let two T-period scenario trees with set of nodes
N , N ′:
▶ The ancestors of n ∈ N are A(n).

▶ The distance between two nodes at stage t,
is dn1,n2 .

▶ The transport mass between nodes at stage
t, is noted πi,j or π(i, j).

The Nested Distance
For ι ∈ [1,∞), the process distance of order ι between P and P′ is the ιth root of
the optimal value of the following LP:

NDι(P,P′) :=



min
π

∑
i∈NT ,j∈N ′

T

π(i, j)dιi,j

s.t.
∑
{j:n∈A(j)} π(i, j|m,n) = P (i|m), (m ∈ A(i), n)∑
{i:m∈A(i)} π(i, j|m,n) = P ′(j|n), (n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1.

(NDT)
2

2Multimarginal optimal transport problem.
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II. Kovacevic and Pichler’s Reduction Tree
Method
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Kovacevic and Pichler’s algorithm (KP)

KP algorithm: to approximate a tree, a smaller tree with a given filtration is improved in order
to minimize the distance with the original tree. The probabilities and the scenario values are
alternatively optimized until convergence.

9



Probability Optimization

Given the stochastic process quantizers {ξ′(n) ∈ Ξ : n ∈ N ′} and structure of
(N ′, A′), we are looking for the optimal probability measure P ′ to approximate
P :=(ΞT+1,F , P ), regarding the nested distance.

Recursive Problem



min
π

∑
m∈Nt

π(m,n)
∑

i∈m+,j∈n+ π(i, j|m,n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m,n) = P (i|m), (i ∈ m+)∑
i∈m+ π(i, j|m,n) =

∑
i∈m̃+ π(i, j|m̃, n), (j ∈ n + and m, m̃ ∈ Nt)

π(i, j|m,n) ≥ 0.
(RP)

▶ Computationally expensive due to the solving of potentially large-scale LPs
repeatedly. Can be untractable for large-scale scenario trees.
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III. The Probability Optimization Step is a
Wasserstein Barycenters Problem
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Wasserstein Barycenter (WB) within the KP Algorithm
▶ In the Scenario Reduction problem with seek P′ (with given filtration F ′t)

that minimizes ND2(P,P′)

▶ Our first contribution is to notice than the steps of the KP algorithm is a
Wasserstein Barycenter problems (WB)

(left) Original tree, (right) Approximated tree. The probabilities (P (n7|n3), P (n8|n3))
are computed as the Wasserstein Barycenter of the set of (known) probabilities
associated to the boxed subtrees on the left.
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Wasserstein Barycenters

Let empirical (discrete) measures being defined like:

supp(ν) :=
{
ξ′1, . . . , ξ

′
S

}
and ν =

S∑
s=1

qsδξ′s
. (6)

Wasserstein Barycenter Problem
Given M measures {ν1, . . . , νM} in P (Rd), an ι-Wasserstein barycenter with
weights α ∈ ∆M is a solution to the following optimization problem:

min
µ∈P (Rd)

M∑
m=1

αmW ι
ι (µ, ν

m) . (WB)

▶ (WB) can be solved with specialized techniques: MAM (Method of Averaged
Marginals of [3]), IBP (Iterative Bregman Projection of [4])

3[Mimouni, D. W., Malisani, P., Zhu, J., & de Oliveira, W. SIAM Journal on Mathematics
of Data Science (2024)]

4[Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. SIAM Journal on
Scientific Computing. (2015)]
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Boosted Algorithm

Scenario tree reduction via nested distance and
Wasserstein barycenters

▷ Step 0: input

1: Let the original scenario tree P = (ΞT+1,F, P ) and a smaller scenario tree P
′0 =

(ΞT+1,F′, P
′0) be given.

2: Choose a tolerance Tol > 0

3: for k = 0, 1, 2, . . . do
▷ Step 1: Improve the scenario values (quantizers)

4: If ι = 2 use an analytic solution otherwise do a gradiant descent.

▷ Step 2: Improve the probabilities
5: for t = T − 1, . . . , 0 do ▷ Recursivity
6: for all n ∈ N ′

t do ▷ Wasserstein barycenters

7: Set αn
m ← πk(m,n), m ∈ Nt

8: Use IBP, or MAM to compute πk+1(·, ·|·, n) solving (WB)
9: end for

10: end for

▷ Step 3: Stopping test

11: if δkι (0, 0)− δk+1
ι (0, 0) ≤ Tol then

12: Define P ′(nT ) =
∑

mT ∈NT
πk+1(mT , nT ) for all nT ∈ N ′

T then P ′(n) =∑
j∈n+ P ′(j) for all n ∈ N ′

t , t ̸= T

13: Set NDι(P,P′)← δk+1
ι (0, 0)

14: Stop and return with the reduced tree P
′

= (ΞT+1,F′, P ′) and nested distance
NDι(P,P′)

15: end if
16: end for
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IV. Applications

15



Reduction scenario applications

Scenario tree reduction employing different solvers to compute the WBs:

▶ A classic LP : KP algorithm + LP,

▶ Iterative Bregmann Projection algorithm 5 : KP algorithm + IBP,

▶ Method of Averaged Marginals (MAM)6 : KP algorithm + MAM.

Evolution of the Nested Distance along the reduction iterations for different initial trees.

5see the work of D. Bennammou and G. Peyré
6see the work of Mimouni, Malisani, Zhu, de Oliveira
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Reduction scenario applications

Evolution of the Nested Distance along the reduction iterations for different initial trees with a
zoom.

Scenarios LP IBP MAM MAM 4 processors
216→16 0.17 0.49 2.21 0.56
1296→32 1.54 14.83 18.23 6.28
7776→ 64 74.25 161.19 344.83 124.44

15625→ 128 487.58 323.76 816.46 341.62
46656→ 128 4905 2136 2541 1256
78125→ 256 13797 4334 3458 1635

Table: Total time (in seconds) per method for the studied trees.
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Impact of the initialization

▶ Kmeans method, starting from 100 scenarios it creates 25 clusters using the
Euclidean norm, and then computes the 25 corresponding barycenters;

▶ Fast Forward Selection (FFS) method, introduced by Heitsch and Römisch7.
The method iteratively selects scenarios that minimize the Wasserstein
distance to the remaining scenarios. At each step, the scenario that best
approximates the distribution is added to the reduced set until the desired
number of 25 scenarios is reached, ensuring an efficient yet effective reduction.

Comparison of the ND to the original tree before and after tree reduction using different

initialization techniques.

7Computational Optimization and Applications (2003)
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Take-away messages

▶ New approach to tackle scenario tree reduction

▶ New easy-to-implement and memory efficient algorithm for reducing scenario
trees

▶ Can leverage parallelization of transport optimal techniques

▶ Makes more accessible (because more efficient) a technique that keeps
maximal information from the initial modelization
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�� ��Thank you!

D. Mimouni, P. Malisani, J. Zhu, W. de Oliveira. Scenario Tree Reduction via
Wasserstein Barycenters.
Submitted to Annals of Operational Research, 2024

▶ Preprint available at
https:

//dan-mim.github.io/files/reduction_tree.pdf

▶ Python code is freely available at
https:

//github.com/dan-mim/Nested_tree_reductionb

Contact:

B daniel.mimouni@ifpen.fr

Ï https://dan-mim.github.io

https://dan-mim.github.io/files/reduction_tree.pdf
https://dan-mim.github.io/files/reduction_tree.pdf
https://github.com/dan-mim/Nested_tree_reductionb
https://github.com/dan-mim/Nested_tree_reductionb
 daniel.mimouni@ifpen.fr
https://dan-mim.github.io


Appendix
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Stability Results for ND

Stability result for the ND
Consider the value function val(H) of stochastic optimization problem seen earlier
so that val(H) := val(ξH), and L2 a constant, then it holds8:

|val(H)− val(G)| ≤ L2 · dl2(H,G)2 (7)

▶ It is not the case when using the WD.

8See Pflug and Pichler 2012
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Probability Optimization in the KP algorithm

Given the stochastic process quantizers {ξ′(n) ∈ Ξ : n ∈ N ′} and structure of
(N ′, A′), we are looking for the optimal probability measure P ′ to approximate
P :=(ΞT+1,F , P ), regarding the nested distance.

Large non-convex optimization problem

min
π,P ′

∑
i∈NT ,j∈N ′

T

π(i, j)dιi,j

s.t.
∑

j∈n+
π(i,j)
π(m,n)

= P (i|m), (∀m ∈ A(i), n)

∑
i∈m+

π(i,j)
π(m,n)

= P ′(j|n), (∀n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1

P ′(j|j−) ≥ 0.

(8)

▶ This is a bilinear problem

▶ There is a large number of decision variables and bilinear constraints.
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From Bilinear to Recursive Problem

▶ π(i, j) = π(i, j|m,n)× π(m,n),

▶ δι(m,n) :=
∑

i∈m+,j∈n+ π(i, j|m,n)δι(i, j) for m ∈ Nt, n ∈ N ′t ,
▶ δι(i, j) = dι(ξi, ξ

′
j)

ι =: dιi,j for the leaves i, j of the trees.

∑
i∈NT ,j∈N ′

T

π(i, j)dιi,j =
∑

i∈NT ,j∈N ′
T

π(i, j)δι(i, j) (9a)

=
∑

i∈NT ,j∈N ′
T

∑
m∈i−,n∈j−

π(i, j|m,n)π(m,n)δι(i, j) (9b)

=
∑

n∈N ′
T−1

∑
m∈NT−1

π(m,n)
∑

i∈m+,j∈n+

π(i, j|m,n)δι(i, j)︸ ︷︷ ︸
δι(m,n)

(9c)

=
∑

n∈N ′
T−1

∑
m∈NT−1

π(m,n)δι(m,n). (9d)

Evaluate the ND recursively
δι(0, 0) = ND(P,P′)
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From a large LP to an Optimal Transport Problem

The recursive problem (RP) is a Wasserstein Barycenter problem.

Given t ∈ {1, . . . , T} and n ∈ N ′t , problem (RP) reads as:



min
π

∑
m∈Nt

π(m,n)
∑

i∈m+,j∈n+ π(i, j|m,n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m,n) = P (i|m), (i ∈ m+)∑
i∈m+ π(i, j|m,n) =

∑
i∈m̃+ π(i, j|m̃, n), (j ∈ n + and m, m̃ ∈ Nt)

π(i, j|m,n) ≥ 0.

(RP)

▶
∑

i∈m+ π(i, j|m,n) = P ′(j|n) for j ∈ n+, for all m = m1, . . . ,mM .
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From a large LP to an Optimal Transport Problem

The recursive problem (RP) is a Wasserstein Barycenter problem.

Given t ∈ {1, . . . , T} and n ∈ N ′t , problem (RP) reads as:

min
P ′,π

π(m1, n)
∑

i∈m1+,j∈n+

π(i, j|m1, n)δι(i, j) + · · ·+ π(mM , n)
∑

i∈mM+,j∈n+

π(i, j|mM , n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m1, n) = P (i|m1), (i ∈ m1+)

.
. .

.

.

.∑
j∈n+ π(i, j|mM , n) = P (i|mM ), (i ∈ mM+)∑

i∈m1+ π(i, j|m1, n) = P ′(j|n), (j ∈ n+)

. .
.

.

.

.∑
i∈mM+ π(i, j|mM , n) = P ′(j|n), (j ∈ n+)

∑
j∈n+ P ′(j|n) = 1, π(i, j|m1, n) ≥ 0 · · · π(i, j|mM , n) ≥ 0,

(WB)

▶
∑M

i=1 π(mi, n) = 1 per definition. Kovacevic and Pichler fix π(m,n) with the
values computed from the previous iteration.
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From a large LP to an Optimal Transport Problem
The recursive problem (RP) is a Wasserstein Barycenter problem.

Given t ∈ {1, . . . , T} and n ∈ N ′t , problem (RP) reads as:



min
P ′,π

α
n
1

∑
i∈m1+,j∈n+

π(i, j|m1, n)δι(i, j) + · · ·+ αn
M

∑
i∈mM+,j∈n+

π(i, j|mM , n)δι(i, j)

s.t.
∑

j∈n+ π(i, j|m1, n) = P (i|m1), (i ∈ m1+)

.
.
.

.

.

.∑
j∈n+ π(i, j|mM , n) = P (i|mM ), (i ∈ mM+)∑

i∈m1+ π(i, j|m1, n) = P ′(j|n), (j ∈ n+)

.
.
.

.

.

.∑
i∈mM+ π(i, j|mM , n) = P ′(j|n), (j ∈ n+)

∑
j∈n+ P ′(j|n) = 1, π(i, j|m1, n) ≥ 0 · · · π(i, j|mM , n) ≥ 0,

(WB)

This is a Wasserstein barycenter problem, with:

▶ The right constraints on mass conservation,

▶ The left constraints on unicity of the barycenter.
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The Method of Averaged Marginals

MAM algorithm
Input: Initial plan π = (π1, . . . , πm) and parameter ρ > 0
Set Sm ←| supp(qm) |, for m = 1, . . . ,M

Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

Set Dm ← αm (δι(i, j))(i,j)∈m+×n+ and set qm = (P (i|m))i∈m+

while not converged do

p←
∑M

m=1 ampm ▷ Average the marginals

for m = 1, . . . ,M do
for s = 1, . . . , Sm do

πm
:s ← Proj∆(qms )

(
πm
:s + 2 p−pm

Sm − 1
ρ
Dm

:s

)
− p−pm

Sm

end for
pm ←

∑Sm

s=1 πm
rs ▷ Update the mth marginal

end for

end while
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The Iterative Bregman Projection

IBP algorithm
Input: Given αm for m = 1, . . . ,M , λ > 0, initialize v0 and u0 with an arbitrary positive
vector, for example 1S Initialize p0, for example 1R/R
Set Dm ← αm (δι(i, j))(i,j)∈m+×n+ and set qm = (P (i|m))i∈m+

Define Km = e−λDm
for all m = 1, . . . ,M

while not converged do
▷ Projections onto the constraints

for m=1,. . . ,M do

vm,k+1 = qm

(Km)T um,k

um,k+1 = pk+1

Kmvm,k+1

end for

▷ Approximation of the barycenter

pk+1 =
∏M

m=1(K
mvm,k+1)αm

end while

return πm = diag(um)Kmdiag(vm) for all m = 1, . . . ,M

28



Impact of the tree structure

Influence of the tree structure on the

computation time of a stage, depending on the

method in use: MAM in green and LP in

orange.

Influence of the tree structure on the

computation time for small n.
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Impact of the tree structure

Speed comparison with IBP for different λ: A positive time difference means the method is

faster than LP. Each curve is obtained by averaging the ND accuracy over

n ∈ {2, 4, 6, 8, 10, 12, 14, 16}.

Average influence of λ in the precision. Each curve is obtained by averaging the ND accuracy

over n ∈ {2, 4, 6, 8, 10, 12, 14, 16}.
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