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D. Mimouni

Preface

This document compiles the work accomplished during the first year and a half of my thesis. It is structured into
two primary sections: one detailing our research on a novel method for computing Wasserstein Barycenters, and
the other presenting our proposed approach to addressing scenario tree reduction. This endeavor has been the result
of close collaboration with Paul, Jiamin, and Welington.

Introduction for laypersons

This subsection will present with an example, how scenario tree and decision management under uncertainty are
linked.
Intermittent power plants are subject to grid integration strategies. Let us take the example of a solar panel farm
supplying electricity to a city. On the one hand, the aim of this system is always to provide enough electricity
for the city’s needs. On the other hand, electricity production relies on factors beyond our control (sunlight and
weather in general). Therefore, this system must be connected to stable electricity sources to mitigate potential
power shortages in the event of insufficient sunlight. For example, France would be more likely to rely on nuclear
plants, which are more prevalent. Then, the market (out of European laws) works this way: the day prior, the
farm manager is tasked with determining the necessary external electricity based on the estimated farm production
and projected city consumption, represented as probability densities. Initially, the manager decides to ensure that
the electricity supplied aligns with the farm’s production. Throughout the day and at each time step (which could
be minutes for solar panels), the manager monitors the energy produced by the farm, the energy consumed during
each time step, and whether the introduction of external electricity maintains a balanced consumption-to-production
equation. Then three cases can happen:

• The consumption exceeds the combined production from the farm and the external electricity supply. The
manager must purchase additional external electricity at higher price.

• The combination of production from the farm and external electricity sufficiently meets the city’s needs,
eliminating the necessity for the manager to purchase additional electricity. Any surplus electricity can be
stored in energy storage facilities such as dams or batteries.

• The combination of farm production and external electricity adequately fulfills the city’s requirements. How-
ever, the manager always has the option to purchase additional external electricity and store it if the combined
cost of purchase and storage (based on forecasts modeled as probability distributions) is more favorable at
the current time step compared to purchasing it at any future time step.

This description of the problem emphasizes that each decision has repercussions on subsequent decisions, thereby
creating a chain of interconnected choices. In any case, the manager’s objective is to minimize expenses to the
greatest extent possible.
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Abstract

Managing uncertainties in multistage stochastic optimization poses a substantial challenge, necessitating a a com-
plex trade-off between, on the one hand, the representation of the uncertainties (i.e. the number of scenarios) and,
on the other hand, the computational tractability. Scenario reduction methods, pioneered in 2003 by Dupavcova et
al. [26], offer a promising outlooks for achieving a satisfactory trade-off. However, the choice of distance metric for
reducing scenario trees significantly influences solution quality. While clustering techniques have been prevalent, re-
cent research has turned to Wasserstein-based methods to minimize transport distance between probabilty measures.

This work presents a comprehensive investigation of the use of Wasserstein distance for scenario tree reduction in
the context of multistage stochastic optimization. The Wasserstein barycenter (WB) serves as a tool for summariz-
ing sets of probabilities, it appears in a number of disciplines, including applied probability, clustering and image
processing. Numerically efficient methods to computing the WB rely on entropic regularization functions, resulting
in approximate solutions due to limitations in solver capabilities. In contrast, this research introduces an exact
approach based on the Douglas-Rachford splitting method directly applied to the WB linear optimization prob-
lem.The proposed solving algorithm achieves a trade-off between the numerical efficiency of regularization-based
methods and the precision of exact LP solvers.

In [41], the authors develop a reduction algorithm based on nested Wasserstein distance. This algorithm consists
of computing a significant amount of Wasserstein barycenters. The second contribution of this work is to imple-
ment dedicated WB computation algorithms, including the Iterative Bregmann Projection method (IBP), Sinkhorn
distance, and the newly introduced Method of Averaged Marginals (MAM) in the algorithm proposed in [41] to
accelerate its performances.

By proposing efficient algorithms for computing Wasserstein barycenters and reducing scenario trees, we address
critical challenges in managing uncertainties in multistage stochastic optimization. Looking ahead, future research
directions include further exploration of the interplay between optimization algorithms and stochastic processes to
refine scenario tree reduction methodologies and enhance the applicability of Wasserstein-based methods in complex
optimization problems.
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Chapter 1

Introduction

1.1 Context

The global energy landscape is transforming, driven by the imperative to reduce greenhouse gas emissions and
mitigate climate change. Central to this transition is the increasing integration of renewable energy sources, such as
wind and solar, into the electricity generation mix. While renewable energy offers significant environmental benefits,
its inherent intermittency and variability present formidable challenges for grid operators and energy management
systems.

In traditional electricity grids dominated by fossil fuels, power generation could be adjusted according to demand
fluctuations, providing a stable and predictable supply. However, the rise of renewables introduces a new dynamic,
where generation is subject to the vagaries of weather patterns and time-of-day variations. This unpredictability
disrupts the conventional energy supply and demand balance paradigm, necessitating innovative solutions for effec-
tive grid management.

One key strategy to address this challenge lies in enhancing flexibility on the demand side of the electricity grid.
By enabling consumers to adjust their energy consumption patterns in response to real-time conditions, demand-side
flexibility offers a powerful tool for optimizing the utilization of renewable energy resources. However, realizing this
potential requires sophisticated energy management systems capable of orchestrating complex interactions between
diverse stakeholders, energy assets, and market dynamics.

In this context, optimization-based energy management systems emerge as a promising approach to harness the
full potential of renewable energy integration. By leveraging advanced mathematical techniques, such as stochastic
optimization, these systems can intelligently allocate resources, optimize scheduling, and mitigate risks in the pres-
ence of uncertainty. Stochastic optimization techniques are well-suited to model and optimize complex, uncertain
systems, making them ideally suited for addressing the inherent variability of renewable energy generation.
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1.2 Stochastic optimal control framework for energy management

Mathematically speaking, most energy management systems aim at solving the following multistage stochastic
optimization problem

min
u1

c1(x1, u1, ξ1) + min
u2

Eξ2

[
c2(x2, u2, ξ2) + · · ·+min

uT

EξT [cT (xT , uT , ξT )]

]
(1.1)

under the following constraints

xt+1 = ft(xt, ut, ξt) t = 1, . . . , T − 1 (1.2a)

(ut, xt) ∈ Kt ⊂ Rm ×Rn t = 1, . . . , T (1.2b)

x1 = x0, (1.2c)

where ut ∈ Rm denotes the decision vector at stage t, xt ∈ Rn denotes the state variable, ξt ∈ Rp denotes the
random vector at stage t, ct : R

n×Rm×Rp 7→ R denotes the cost function at stage t and ft is the system dynamics.
From the recursive structure of the objective function, one can deduce that an optimal decision at stage t, denoted
ūt, depends on the realizations of the past random variables denoted (ξ1, . . . , ξt) and on the statistical properties of
the future random variables (ξt+1, . . . , ξT ). Thus, an optimal solution of eq. (1.1) is said to be non-anticipative: at
stage t, we have decided (u1, . . . , ut), but we cannot anticipate decisions for stages t+ 1, . . . , T because the future
is uncertain. When the uncertainties are represented with finitely many events, this nonanticipative format clearly
leads to a scenario tree structure.

Most current energy management methods handle this multistage optimization problem using Model Predictive
Control based methods (MPC) or stochastic optimization-based methods.

1.2.1 MPC for multistage stochastic optimal control problems

At each time step t, MPC algorithms [29,42,47] consist in predicting a realization of the next K random variables

denoted (ξ̂t+1, . . . ξ̂t+K), and solve the following deterministic optimization problem

min
ut,...,ut+K

ct(xt, ut, ξt) +

t+K∑
s=t+1

cs(xs, us, ξ̂s) (1.3)

under constraints described in eq. (1.2), and in using the computed optimal variable ūt as a decision variable at
stage t. These methods are easy to implement and rely on deterministic optimization algorithms. However, the
optimization problem from eq. (1.3) almost does not use the statistical properties of the future random variables,
potentially yielding far from sub-optimal decisions with respect to the original optimization problem from eqs. (1.1)
and (1.2).

1.2.2 Dynamic programming-based optimization methods

Stochastic optimization methods are often based on sequential decomposition methods based on the principle of
dynamic programming [5, 7, 8, 10]. Recently, significant work has been done on Stochastic Dual Dynamic Pro-
gramming methods [12, 15, 48, 60, 61]. These methods have the advantage of naturally computing non-anticipative
decisions and of being able to take into account a large number of uncertainties scenarios. On the other hand,
these methods require strong assumptions on stochastic process, such as stage-wise independence. In the context
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of energy management problems, this assumption is not always satisfied. In addition, these methods are appealing
since they can overcome the dynamic programming’s curse of dimensionality when the system’s dynamics eq. (1.2a)
is linear. Again, this assumption is often not met in practice.

1.2.3 Scenario decomposition for stochastic optimal control problems

Scenario decomposition techniques use a different paradigm of stochastic optimization problems: instead of stage
decomposition, minimizing a recursive sequence of recourse functions, scenario decomposition techniques decompose
the problem per scenario while keeping the whole time horizon in individual (scenario-based) subproblems. This
different paradigm requires a different manner to deal with nonanticipativity, which strongly depends on the scenario
tree filtration F . Therefore, scenario decomposition techniques consist in optimizing over a set of functions defined
on a probability space denoted (Ω,F , π). The function spaces on this probability space are denoted as follows

U := {u : Ω 7→ ℓ2([1, . . . , T ];R
m)} (1.4)

X := {x : Ω 7→ ℓ∞([1, . . . , T ];Rn)} (1.5)

Ξ := {ξ : Ω 7→ ℓ2([1, . . . , T ];R
p)} (1.6)

And we endow the space U with the following scalar product

⟨f, g⟩U := E [⟨f(.), g(.)⟩ℓ2 ] (1.7)

and we denote ∥.∥U its associated norm. The multistage optimization problem then writes

min
(x,u)∈X×U

{
E [F (x, u, ξ)] := E

[
T∑

t=1

ℓt(xt, ut, ξt)

]}
(1.8)

under the following constraints

xt+1 = ft(xt, ut, ξt) (1.9a)

(xt, ut) ∈ Kt (1.9b)

x1 = x0 (1.9c)

u− E [u|ξ] = 0. (1.9d)

The notation E[u|ξ] is the projection, with respect to ∥.∥U , onto the subspace of function adapted to ξ, i.e., it is
the projection on the non-anticipative space. Therefore, constraint eq. (1.9d) ensures that the control u is non-
anticipative. Now, let us denote M : u 7→ u − E[u|ξ], the projection on the space orthogonal to non-anticipative
strategies. This operator is auto-adjoint for the scalar product ⟨., .⟩U . Using this property one can define the
augmented Lagrangian of problem eqs. (1.8) and (1.9a) to (1.9d) as follows

sup
λ
⟨λ,M(u)⟩U = sup

λ
⟨M(λ), u⟩U

Lr(x, u, λ) := E

[
F (x, u, ξ) +

T−1∑
t=1

I0 (ft(xt, ut, ξt)− xt+1) +

T∑
t=1

IKt(xt, ut)

]
+ ⟨M(λ), u⟩U +

r

2
∥M(u)∥2U (1.10)

where IA is the indicatrix of the set A. Assuming that the probability space (Ω,F , π) is discrete and denoting
w := M(λ), one can use the progressive hedging algorithm (PHA) [56,57], which is a operator splitting method, as
described in algorithm 1.
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Algorithm 1 Progressive Hedging Algorithm - PHA

▷ Step 0: Input
1: k := 0; r > 0; w0 := 0; success := ⊥; tol > 0

2: while ¬success do
▷ Compute optimal solution by scenario

3: for ωi ∈ Ω do
4:

(x̂k+1(ωi), û
k+1(ωi)) ∈ argmin

(x,u)

F (x, u, ξ(ωi)) + ⟨wk(ωi), u⟩ℓ2 +
∑
t

I0 (ft(xt, ut, ξt(ωi))− xt+1)

+
∑
t

IKt(xt, ut) +
r

2
∥u− uk(ωi)∥ℓ2 (1.11)

5: end for
▷ Update non-anticipative control and dual variables

6: uk+1 := E[ûk+1|ξ]
7: wk+1 := wk + r

(
ûk+1 − uk+1

)
8: success := max

{
∥ûk+1(ω)− uk+1(ω)∥ℓ2 : ω ∈ Ω

}
≤ tol

9: k := k + 1
10: end while
11: return (x̂k, ûk)

1.2.4 From scenario decomposition to scenario trees

The PHA requires computing the conditional expectation E[u|ξ] at each iteration. Now, at each time step t, the
random variables ξ[t] := (ξ1, . . . , ξt) generate a partition of Ω denoted Ãt defined as follows

Ãt := {A ⊆ Ω : ∀ω1, ω2 ∈ A,∀s ≤ t, ξs(ω1) = ξs(ω2)} (1.12)

The elements of the partition Ãt are called t-atoms and we denote Ft the smallest σ-algebra generated by the
t-atoms, and the sequence (Ft)t is the filtration generated by the random variables ξ[t]. Finally the sequence of
t-partition can be represented as a scenario tree, where each node of depth t corresponds to a t-atom as illustrated on
Figure 1.1. The non-anticipative constraint (1.9d) ensures that the optimal solution u yields the same t-partition of
Ω as ξ and thus yields the same filtration (Ft)t. Now, using this t-partition computing the conditional expectation
u := E[û|ξ] is straightforward and we have

∀A ∈ Ãt,∀ω ∈ A, u[t](ω) :=
1

π(A)

∑
ω′∈A

π({ω′}) û[t](ω
′). (1.13)

1.3 Scenario reduction for multistage stochastic optimization problem

As illustrated in Section 1.2.4, the random variables and the available information at stages t = 1, . . . , T in a
stochastic optimization problem with finitely many scenarios can be represented as a scenario tree. As a result
the complexity of the multistage stochastic optimization problem increases with the number of scenarios. Hence,
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Figure 1.1: Let Ω = {ω1, . . . , ω4}. At stage t = 1, all scenarios have the same value, i.e., ξ1(ωi) = ξ1(ωj), for all i, j.
At stage t = 2, scenarios {ω1, ω2, ω3} are still identical whereas ξ2(ω4) ̸= ξ2({ω1, ω2, ω3}). Finally, at stage t = 3,
all scenarios are different, ξ3(ωi) ̸= ξ3(ωj), for all i ̸= j.

the necessity of finding an equilibrium between representation of uncertainties and numerical tractability gained
momentum and the concept of scenario reduction was introduced by [26] in 2003, pioneering forward reduction and
backward selection methodologies.

When reducing scenario trees, the choice of the distance to minimize between trees is of primary importance.
There exist distances, and thus methods, that ignore the accumulation of information over time on which rely the
non-anticipativity of stochastic problems.

Notably, one of the most commonly used reduction algorithms is the approach proposed by Heitsch and
Römisch [33], which measures distances between nodes with the same parent, ultimately reducing pairs of nodes
until a stopping criterion is met. The work [69] developed algorithms that employ K-means clustering and LP
moment-matching methods to approximate multistage scenario trees. In [37] comparative analysis of several clus-
tering algorithms are conducted, it highlights trade-offs between computation time and nested distance but also that
the general behaviour of these algorithms concerning the closeness to the exact solution of the stochastic problem
is still volatile.
Wasserstein-based methods aim to minimize probabilistic distances, akin to the Wasserstein distance [58, 66], be-
tween the original complex tree and a simpler smaller tree whose solution computation will be more tractable; see
for instance [24, 26]. Li and Floudas [44] treat scenario reduction as a mixed-integer linear programming (MILP)
problem, and aim at reducing the Wasserstein distance between scenarios. Subsequent works [39, 43] improved
the LP-based scenario reduction strategy, the latter solved the entropy-regularized optimal transport using the
Sinkhorn–Knopp algorithm [64].

The Wasserstein distance approach is a natural choice when tackling probability distributions but does not
capture the structural information of multistage scenario trees. Neglecting the tree filtration potentially leads
to deviations in solutions, because the solution of a stochastic optimisation problem is non-anticipative. This
is why it is of great importance to use a reduction method that takes into account the tree structure, i.e. the
filtration. Indeed, [36] studied the stability of multistage stochastic program and showed that multistage scenario
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tree reductions should be based on a Lr distances and a filtration distances. They introduced the filtration distance
and derived a method based on this measure [34, 35]. However, this method encounters computational challenges,
as they rely on solving NP-hard facility location problems. The work [16] proposed a scenario tree reduction
algorithm that circumvents this difficulty by clustering tree nodes based on a new filtration distance and computes
an approximation of the reduction problem.

The introduction of the nested distribution and nested distance [51, 52], also called process distance, offered a
valuable framework for stochastic programs, allowing for the avoidance of the filtration distance. This new way of
computing a distance between trees that takes into account the filtration, is now broadly used to compare trees
and assess the accuracy of reduction methods. Leveraging the nested distance to guide the process approximation
enables control over both the statistical quality of the approximation and its impact on the objective in multistage
stochastic optimization problems pertaining to the respective stochastic process [36,41]. Kovacevic and Pichler [41]
introduced an algorithm that directly targets the minimization of the nested distance, although this approach is
proved complex and computationally expensive. Indeed while it is easy to calculate the process distance between
given trees by solving one LP, finding a tree to minimize the process distance is much more difficult. Both proba-
bilities and values (i.e., the states or outcomes) of the approximating tree have to be chosen, such that the process
distance is minimized. This leads to a large, non-convex optimization problem, which can be solved in reasonable
time only for small instances due to the computation of multiple potentially large-scale LPs. The work [6] provides
a variant of the method in [41] capable to efficiently handle very large scenario trees provided the stochastic process
is stage-wise independent, a strong assumption we do not assume in this work. Introducing a more effective scenario
tree reduction method based on the nested distance is of paramount significance.

Based on the Kovacevic and Pichler’s work [41], this article introduces a novel approach for reducing general
scenario trees. We noticed that the minimization of the Nested Distance between two trees, as employed in the Ko-
vacevic and Pichler’s method, makes naturally appear the Wasserstein Barycenter problem. We propose to leverage
the optimal transport problem and employ efficient algorithms, such as the Iterative Bregmann Projection method
(IBP) [9], the Sinkhorn distance [40,64] or the newly introduced Method of Averaged Marginals [46], to attractively
enhance the Kovacevic and Pichler’s reduction method. This work offers a promising solution to the computational
challenges of scenario tree reduction.

The remainder of this work is organized as follows. Chapter 2 tackles the central optimization problem of the
tree reduction process: we provide background information on optimal transport, delve into the concept of the
Wasserstein distance, and discuss its implications in computing barycenters. Subsequently, we introduce a novel
algorithm designed to address the problem of computing Wasserstein Barycenter (WB): the Method of Averaged
Marginals. Chapter 3 presents the Nested Distance and the optimal transport methods applied to stochastic
processes to reduce trees. The barycentric approach for reduction is introduced, and the method’s algorithm is
presented. This work concludes with numerical applications comparing the initial Kovacevic and Pichler’s method
(KP) with the two other versions introduced in this paper. Finally, Chapter 4 concludes with a roadmap outlining
the remaining tasks to be completed before the end of the PhD project.
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Chapter 2

The Wasserstein Barycenter problem

2.1 Literature review

In applied probability, stochastic optimization, and data science, a crucial aspect is the ability to compare, summa-
rize, and reduce the dimensionality of empirical measures. Since these tasks rely heavily on pairwise comparisons
of measures, it is essential to use an appropriate metric for accurate data analysis. Different metrics define different
barycenters of a set of measures: a barycenter is a mean element that minimizes the (weighted) sum of all its
distances to the set of target measures. When the chosen metric is the optimal transport one, and there is mass
equality between the measures, the underlying barycenter is denoted by Wasserstein Barycenter (WB).

The optimal transport metric defines the so-called Wasserstein distance (also known as Mallows or Earth Mover’s
distance), a popular choice in statistics, machine learning, and stochastic optimization [23,50,53]. The Wasserstein
distance has several valuable theoretical and practical properties [58, 66] that are transferred to (Wasserstein)
barycenters [1, 19,50,55]. Indeed, thanks to the Wasserstein distance, one key advantage of WBs is their ability to
preserve the underlying geometry of the data, even in high-dimensional spaces. This fact makes WBs particularly
useful in image processing, where datasets often contain many pixels and complex features that must be accurately
represented and analyzed [31,62].

Being defined by the Wasserstein distance, WBs are challenging to compute. The Wasserstein distance is
computationally expensive because, to compute an optimal transport plan, one needs to cope with a large linear
program (LP) that has no analytical solution and cubic worst-case complexity1 [72]. The situation becomes even
worse for computing a WB because its definition involves several optimal transport plans. In the simpler case of
fixed support, which is the focus of this work (see Section 2.2 below), computing a WB amounts to solving an LP
whose dimensions generally exceed standard solvers’ capabilities [1]. Several numerical methods have been proposed
in the literature to address the challenge. They invariably fall into one of the following categories:

i) Inexact methods, based on reformulations via an entropic regularization [9, 19–21,30,50,72];

ii) Exact decomposition methods, consisting in solving a sequence of smaller and simpler subproblems [20,71].

While our proposal falls into the second category, the vast majority of methods found in the literature are
inexact ones, employing or not decomposition techniques. Indeed, the work [20] proposes to inexactly compute a
WB by solving an approximating model obtained by regularizing the WB problem with an entropy-like function.
The technique allows one to employ the celebrate Sinkhorn algorithm [18, 63], which has a simple closed-form

1More precisely, O(S3log(S)), with S the size of the input data.
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expression and can be implemented efficiently using only matrix operations. When combined with a projected
subgradient method, this regularizing approach fits into category i) above. However, if instead the underlying
transport subproblems are solved exactly without the regularization technique, then Algorithm 1 from [20] falls into
category ii).

The regularization technique of [18] opened the way to the Iterative Bregman Projection (IBP) method proposed
in [9]. IBP is highly memory efficient for distributions with shared support set and is considered to be one of the
most effective methods to tackle WB problems. However, as IBP works with an approximating model, the computed
point is not a solution to the WB problem, and thus IBP is an inexact method.

Another approach fitting into the category of inexact methods has been recently proposed in [72], which uses
the same type of regularization as IBP but decomposes the problem into a sequence of smaller subproblems with
straightforward solutions. More specifically, the approach in [72] is an modification (tailored to the WB problem)
of the Bregman Alternating Direction Method of Multipliers (B-ADMM) of [67]. The modified B-ADMM has been
shown to compute promising results for sparse support measures and therefore is well-suited in some clustering
applications. However, the theoretical convergence properties of the modified B-ADMM algorithm is not well
understood and the approach should be considered as an heuristic.

An inexact method that disregards entropic regularizations is presented [55], and denoted by Iterative Swapping
Algorithm (ISA). The approach is a non-parametric algorithm that provides a sharp image of the support of the
barycenter and has a quadratic time complexity. Essentially, ISA is designed upon approximating the linear program
by a multi-index assignment problem which is solved in an iterative manner. Another approach based on successive
approximations of the WB (linear programming) problem is proposed in [13].

Concerning exact methods, the work [14] proposes a simpler linear programming reformulation of the WB
problem that leads to an LP that scales linearly with the number of measures. Although the resulting LP is smaller
than the WB problem, it still suffers from heavy computation time and memory consumption [55]. In contrast, [71]
proposes to address the WB problem via the standard ADMM algorithm, which decomposes the problem in smaller
and simpler subproblems. As mentioned by the authors in their subsequent paper [72], the numerical efficiency of
the standard ADMM is still inadequate for large datasets.

All the methods mentioned in the above references deal exclusively with sets of probability measures because
WBs are limited to measures with equal total masses. A tentative way to circumvent this limitation is to normalize
general positive measures to compute a standard WB. However, such a naive strategy is generally unsatisfactory and
limits the use of WBs in many real-life applications such as logistic, medical imaging and others coming from the field
of biology [32,59]. Consequently, the concept of WB has been generalized to summarize such more general measures.
Different generalizations of the WB exist in the literature, and they are based on variants of unbalanced optimal
transport problems that define a distance between general non-negative, finitely supported measures by allowing for
mass creation and destruction [32]. Essentially, such generalizations, known as unbalanced Wasserstein barycenters
(UWBs), depend on how one chooses to relax the marginal constraints. In the review paper [59] and references
therein, marginal constraints are moved to the objective function with the help of divergence functions. Differently,
in [32] the authors replace the marginal constraints with sub-couplings and penalize their discrepancies. It is worth
mentioning that UWB is more than simply copying with global variation in the measures’ total masses. Generalized
barycenters tend to be more robust to local mass variations, which include outliers and missing parts [59].

For the sake of a unified algorithmic proposal for both balanced and unbalanced WBs, in this work, we consider
a different formulation for dealing with sets of measures with different total masses. While our approach can be
seen as an abridged alternative to the thorough methodologies of [32] and [59], its favorable structure for efficient
splitting techniques combined with the good quality of the issued UWBs confirm the formulation’s practical interest.

To cope with the challenge of computing (balanced and unbalanced) WBs, we propose a new algorithm based
on the celebrated Douglas-Rachford splitting operator method (DR) [25,27,28]. Our proposal, which falls into the
category of exact decomposition methods, is denoted by Method of Averaged Marginals (MAM). The motivation
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for its name is due to the fact that, at every iteration, the algorithm computes a barycenter approximation by
averaging marginals issued by transportation plans that are updated independently, in parallel, and even randomly
if necessary. Accordingly, the algorithm operates a series of simple and exact projections that can be carried out in
parallel and even randomly. Thanks to our unified analysis, MAM can be applied to both balanced and unbalanced
WB problems without any change: all that is needed is to set up a parameter. To the best of our knowledge, MAM
is the first approach capable of handling balanced and unbalanced WB problems in a single algorithm, which can
be further run in a deterministic or randomized fashion.

In addition to its versatility, MAM copes with scalability issues arising from barycenter problems, is memory
efficient, and has convergence guarantees to an exact barycenter. Although MAM’s convergence speed is not as
exceptional as IBP’s, it is observed in practice that after a few tens of iterations, the average of marginals computed
by MAM is a better approximation of a WB than the solution provided by IBP, no matter how many iterations
the latter performs2. As further contributions, we conduct experiments on several data sets from the literature to
demonstrate the computational efficiency and accuracy of the new algorithm and make our Python codes publicly
available at the link (https://ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb).

The remainder of this work is organized as follows. Section 2.2 introduces the notation and recalls the balanced
WB problems’ formulation. The proposed formulation for unbalanced WBs is presented in Section 2.3. In Section 2.4
the WB problems are reformulated in a suitable way so that the Douglas-Rachford splitting (DR) method can be
applied. The same section briefly recalls the DR algorithm and its convergence properties both in the deterministic
and randomized settings. The main contribution of this work, the Method of Averaged Marginals, is presented
in Section 2.5. Convergence analysis is given in the same section by relying on the DR algorithm’s properties.
Section 2.6 illustrates the numerical performance of the deterministic and randomized variants of MAM on several
data sets from the literature. Numerical comparisons with IBP and B-ADMM are presented for the balanced case.
Then some applications of the UWB are considered.

2.2 Background on optimal transport and Wasserstein barycenter

2.2.1 Continuous Wasserstein Barycenter

Let (Ω, d) be a metric space and P (Ω) the set of Borel probability measures on Ω. Furthermore, let ξ and ζ be two
random vectors having probability measures µ and ν in P (Ω), that is, ξ ∼ µ and ζ ∼ ν.

Definition 1 (Wasserstein Distance). For ι ∈ [1,∞), and probability measures µ and ν in P (Ω). Their ι-
Wasserstein distance Wι is :

Wι(µ, ν) :=

(
inf

π∈U(µ,ν)

∫
Ω×Ω

d(ξ, ζ)ιdπ(ξ, ζ)

)1/ι

, (WD)

where U(µ, ν) is the set of all probability measures on Ω × Ω having marginals µ and ν. We denote by W ι
ι (µ, ν),

Wι to the power ι , i.e. W ι
ι (µ, ν) := (Wι(µ, ν))

ι.

Throughout this work, for τ ≥ 0 a given scalar, the notation ∆n(τ) denotes the set of non-negative vectors in
Rn adding up to τ , that is,

∆n(τ) :=

{
u ∈ Rn

+ :

n∑
i=1

ui = τ

}
. (2.1)

If τ = 1, then ∆n(τ), denoted simply by ∆n, is the n+ 1 simplex.

2The reason is that IBP converges fast but to the solution of an approximate model, not to an exact WB.
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Definition 2 (Wasserstein Barycenter). Given M measures {ν(1), . . . , ν(M)} in P (Ω) and α ∈ ∆M , an ι-Wasserstein
barycenter with weights α is a solution to the following optimization problem

min
µ∈P (Ω)

M∑
m=1

αmW ι
ι (µ, ν

(m)) . (2.2)

A WB µ exists in generality and, if one of the ν(m) vanishes on all Borel subsets of Hausdorff dimension
dim(Ω)− 1, then it is also unique [1]. If the measures are discrete, then uniqueness is no longer ensured in general.

2.2.2 Discrete Wasserstein Barycenter

This work focus on empirical measures based on finitely many R scenarios Ξ := {ξ1, . . . , ξR} for ξ and S(m) scenarios

Z(m) := {ζ(m)
1 , . . . , ζ

(m)

S(m)} for ζ(m), m = 1, . . . ,M , i.e., measures of the form

µ =
∑R

r=1 prδξr and ν(m) =
∑S(m)

s=1 q
(m)
s δ

ζ
(m)
s

, m = 1, . . . ,M , (2.3)

with δu the Dirac unit mass on u ∈ Ω, p ∈ ∆R, and q(m) ∈ ∆S(m) , m = 1, . . . ,M .
In this setting, when the support Ξ is fixed, the ι-Wasserstein distance Wι(µ, ν) of two empirical measures µ

and ν(m) is the ιth root of the optimal value of the following LP, known as optimal transportation (OT) problem

OTΞ(p, q) :=


min
π≥0

R∑
r=1

S∑
s=1

d(ξr, ζs)
ιπrs

s.t.
∑R

r=1 πrs = qs, s = 1, . . . , S∑S
s=1 πrs = pr, r = 1, . . . , R.

(2.4)

The feasible set above is refereed to as the transportation polytope, issued by the so-called marginal constraints. An
optimal solution of this problem is known as an optimal transportation plan. Observe that a transportation plan
can be represented as a matrix whose entries are non-negative, the row sum equals the marginal q, and the column
sum equals p.

Definition 3 (Discrete Wassertein Barycenter - WB). A Wassertein barycenter of a set of M empirical probability
measures ν(m) having support Z(m), m = 1, . . . ,M , is a solution to the following optimization problem

min
Ξ,p∈∆R

M∑
m=1

αmOTΞ(p, q
(m)). (2.5)

The above is a challenging nonconvex optimization problem that is in general dealt with via block-coordinate op-
timization: at iteration k, the support is fixed Ξk, and the convex optimization problem, minp∈∆R

∑M
m=1 αmOTΞk(p, q(m)),

is solved to define a vector pk, which is in turn fixed to solve minΞ
∑M

m=1 αmOTΞ(p
k, q(m)) that updates the support

Ξk to Ξk+1. When the metric d(·, ·) is the Euclidean distance and ι = 2, the last problem has a straightforward
solution (see for instance [19, Alg. 2] and [72, § II]). For this reason, in the remainder of this work we focus on the
more challenging problem of minimizing w.r.t. the vector p.

Definition 4 (Discrete Wasserstein Barycenter with Fixed Support). A fixed-support Wasserstein barycenter of a
set of M empirical probabilities measures ν(m) having support Z(m), m = 1, . . . ,M , is a solution to the following
optimization problem

min
p∈∆R

M∑
m=1

αmOTΞ(p, q
(m)). (2.6)

12
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In the above definition, the support Ξ is fixed and the optimization is performed with respect to the vector
p. Our approach to solve eq. (2.6) can be better motivated after writing down the extensive formulation of the
problem. Indeed, looking for a barycenter µ with fixed atoms ξ and probability p is equivalent to solving the

following huge-scale LP, where we denote d
(m)
rs := αmd(ξr, ζ

(m)
s ) (r = 1, . . . , R, s = 1, . . . , S(m), m = 1, . . . ,M):



min
p,π

R∑
r=1

S(1)∑
s=1

d(1)rs π
(1)
rs + · · ·+

R∑
r=1

S(M)∑
s=1

d(M)
rs π(M)

rs

s.t.
∑R

r=1 π
(1)
rs = q

(1)
s , s = 1, . . . , S(1)

. . .
...∑R

r=1 π
(M)
rs = q

(M)
s , s = 1, . . . , S(M)

∑S(1)

s=1 π
(1)
rs = pr, r = 1, . . . , R

. . .
...∑S(M)

s=1 π
(M)
rs = pr, r = 1, . . . , R

p ∈ ∆R, π
(1) ≥ 0 · · · π(M) ≥ 0,

(2.7)

The constraint p ∈ ∆R above is redundant and can be removed: we always have, for m = 1, . . . ,M ,
∑R

r=1 pr =∑R
r=1

(∑S(m)

s=1 π
(m)
rs

)
=
∑S(m)

s=1

(∑R
r=1 π

(m)
rs

)
=
∑S(m)

s=1 q
(m)
s = 1.

The dimension of the above LP is R(1 +
∑M

m=1 S
(m)) and grows rapidly with the number of measures M . For

instance, for moderate values such as R = S(m) = 1600, m = 1, . . . ,M (corresponding to figures with 40×40 pixels)
and M = 100, the above LP has more than 256 millions of variables3.

Although variable p is the one of interest, we can remove p from the above formulation and recover it easily by
working with the following linear subspace.

Definition 5 (Balanced subspace). We denote by balanced subspace the following linear subspace of balanced
transportation plans:

B :=

π = (π(1), . . . , π(M))

∣∣∣∣∣∣∣∣∣∣

∑S(1)

s=1 π
(1)
rs =

∑S(2)

s=1 π
(2)
rs , r = 1, . . . , R∑S(2)

s=1 π
(2)
rs =

∑S(3)

s=1 π
(3)
rs , r = 1, . . . , R

...∑S(M−1)

s=1 π
(M−1)
rs =

∑S(M)

s=1 π
(M)
rs , r = 1, . . . , R

 . (2.8)

The term balanced is due to the fact that given ν(m) in eq. (2.3),
∑S(m)

j=1 q
(m)
j =

∑S(m′)
j=1 q

(m′)
j , m,m′ = 1, . . . ,M.

Observe that problem eq. (2.7) is equivalent, in terms of optimal value and optimal transportation plans, to the

3More precisely, 256 001 600 variables.
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following LP 

min
π∈B

R∑
r=1

S(1)∑
s=1

d(1)rs π
(1)
rs + · · ·+

R∑
r=1

S(M)∑
s=1

d(M)
rs π(M)

rs

s.t.
∑R

r=1 π
(1)
rs = q

(1)
s , s = 1, . . . , S(1)

. . .
...∑R

r=1 π
(M)
rs = q

(M)
s , s = 1, . . . , S(M)

π(1) ≥ 0 · · · π(M) ≥ 0,

(2.9)

having R
∑M

m=1 S
(m) variables. Note furthermore that an optimal vector p can be easily recovered from any given

optimal transportation plan π(m) by simply setting pr =
∑S(m)

s=1 π
(m)
rs , r = 1, . . . , R.

2.3 Discrete Unbalanced Wasserstein Barycenter

A well-known drawback of the above OT-based concepts is their limitation to measures with equal total mass. To
overcome this limitation, a simple idea is to relax the marginal constraints in eq. (2.4), giving rise to an extension of
the OT problem often referred to as unbalanced optimal transportation (UOT) problem [59] because of its ability to
cope with “unbalanced” measures, i.e., with different masses. Different manners to relax the marginal constraints
yield various UOT problems that can replace OT problems in the barycenter definition eq. (2.6) to yield different
generalizations of the Wasserstein barycenters. As a result, unbalanced Wasserstein barycenter (UWB) deals with
the fact that in some applications the non-negative vectors q(m), m = 1, . . . ,M , are not necessarily probability

related: they do not live in any simplex, i.e.,
∑S(m)

j=1 q
(m)
j ̸=

∑S(m′)
j=1 q

(m′)
j for at least a pair (m,m′) s.t. m ̸= m′.

In this case, the WB problem eq. (2.7) is infeasible and a (balanced) WB is not defined. As an example, think of
p as the quantity of goods to be produced, and q(m) as an event of the random demand for these goods. Since the
demand events are different, we can not decide on a production p that satisfies all the M future demands exactly:
the production of some goods might be overestimated, while for others, underestimated. Hence, it makes sense
to produce p that minimizes not only transportation costs but also the (expectation w.r.t. α of the) mismatches
between production p and demand q(m). Such an intention can be mathematically formulated in several ways. In
this work, we propose a simple one by using a metric that measures the distance of a multi-plan π = (π(1), . . . , π(M))
to the balanced subspace B defined in eq. (2.8). We take such a metric as being the Euclidean distance distB(π) :=
minθ∈B ∥θ − π∥ = ∥ProjB(π) − π∥, and define the following non-linear optimization problem, with γ > 0 a
penalty parameter:

min
π

R∑
r=1

S(1)∑
s=1

d(1)rs π
(1)
rs + · · ·+

R∑
r=1

S(M)∑
s=1

d(M)
rs π(M)

rs + γ distB(π)

s.t.
∑R

r=1 π
(1)
rs = q

(1)
s , s = 1, . . . , S(1)

. . .
...∑R

r=1 π
(M)
rs = q

(M)
s , s = 1, . . . , S(M)

π(1) ≥ 0 · · · π(M) ≥ 0.

(2.10)
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This problem has always a solution because the objective function is continuous and the non-empty feasible set is
compact. Note that in the balanced case, problem eq. (2.10) is a relaxation of eq. (2.9). In the unbalanced setting,
any feasible point to eq. (2.10) yields distB(π) > 0. As this distance function is strictly convex outside B, the
above problem has a unique solution.

Definition 6 (Discrete Unbalanced Wassertein Barycenter - UWB). Given a set {ν(1), . . . , ν(M)} of unbalanced non-
negative vectors, let π̄ ≥ 0 be the unique solution to problem eq. (2.10), and π̃ the projection of π̄ onto the balanced

subspace B, that is, π̃ := ProjB(π̄) (≥ 0). The vector p̄r :=
∑S(m)

s=1 π̃
(m)
rs ,r = 1, . . . , R (no matter m = 1, . . . ,M) is

defined as the γ-unbalanced Wasserstein barycenter of {ν(1), . . . , ν(M)}.

The above definition differs from the ones found in the literature, that also relaxes the constraints
∑R

r=1 π
(m)
rs =

q
(m)
s , see for instance [32,59]. Although the above definition is not as general as the ones of the latter references, it
is important to highlight that our UBW definition provides meaningful results (see Section 2.6.4 below), uniqueness
of the barycenter (if unbalanced), and is indeed an extension of definition 4.

Proposition 1. Suppose that {ν(1), . . . , ν(M)} are probability measures and let γ > ∥vec(d)∥, in problem eq. (2.10),

with vec(d) the vectorization of the matrix d ∈ RR×
∑M

m=1 S(m)

. Then any UWB according to definition 6 is also a
(balanced) WB.

Proof. Observe that the linear function
∑M

m=1

∑R
r=1

∑S(m)

s=1 d
(m)
rs π

(m)
rs is obviously Lipschitz continuous with constant

∥vec(d)∥. Thus, the standard theory of exact penalty methods in optimization (see for instance [11, Prop. 1.5.2])
ensures that, when γ > ∥vec(d)∥, then π̄ solves4 problem eq. (2.10) if and only if π̄ solves eq. (2.9). As a result,
π̄ = ProjB(π̄) and definition 6 boils down to definition 4.

Another advantage of our definition is that the problem yielding the proposed UBW enjoys a favorable structure
that can be efficiently exploited by splitting methods.

At the first glance, computing a UWB seems much more challenging than computing a WB: the former is
obtained by solving a nonlinear optimization problem followed by the projection onto the balanced subspace, while
the latter is a solution of an LP. However, in practice, the LP problem eq. (2.9) is already too large to be solved
directly by off-the-shelf solvers and thus decomposition techniques need to come into play. In the next section we
show that the computational burden to solve either the LP eq. (2.9) or the nonlinear problem eq. (2.10) by the
Douglas-Rachford splitting method is the same. Indeed, it turns out that both problems can be efficiently solved
by the algorithm presented in Section 2.5.3.

2.4 Problem reformulation and the DR algorithm

In this section, we reformulate problems eq. (2.9) and eq. (2.10) in a suitable way so that the Douglas Rachford
splitting operator method can be easily deployed to compute a barycenter in the balanced and unbalanced settings
under the following assumptions: (i) each of the M measures ν(m) are empirical ones, described by a list of atoms

whose weights are q(m) ∈ RS(m)

+ ; (ii) the search for a barycenter is considered on a finitely fixed support of R atoms
with weights p ∈ RR

+.
To this end, we start by first defining the following convex and compact sets

Π(m) :=

{
π(m) ≥ 0 :

R∑
r=1

π(m)
rs = q(m)

s , s = 1, . . . , S(m)

}
, m = 1, . . . ,M. (2.11)

4Note that in the balance case, the objective function of problem eq. (2.10) is no longer strictly convex on the feasible set, and thus
multiple solutions may exist.
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These are the sets of transportation plans π(m) with right marginals q(m). The set with left marginals has already
been characterized by the linear subspace B of balanced plans eq. (2.8).

With the help of the indicator function iC of a convex set C, that is iC(x) = 0 if x ∈ C and iC(x) =∞ otherwise,
we can define the convex functions

f (m)(π(m)) :=

R∑
r=1

S(m)∑
s=1

d(m)
rs π(m)

rs + iΠ(m)(π(m)), m = 1, . . . ,M, (2.12)

and recast problems eq. (2.9) and eq. (2.10) in the following more general setting

min
π

f(π) + g(π) , with : (2.13a)

f(π) :=

M∑
m=1

f (m)(π(m)) and g(x) :=

{
iB(π) if balanced
γ distB(π) if unbalanced.

(2.13b)

Since f is polyhedral and eq. (2.13) is solvable, computing one of its solution is equivalent to

find π such that 0 ∈ ∂f(π) + ∂g(π). (2.14)

Recall that the subdifferential of a lower semicontinuous convex functions is a maximal monotone operator. Thus,
the above generalized equation is nothing but the problem of finding a zero of the sum of two maximal monotone
operators, a well-understood problem for which several methods exist (see, for instance, Chapters 25 and 27 of the
textbook [3]). Among the existing algorithms, the Douglas-Rachford operator splitting method [25] (see also [3, §
25.2 and § 27.2 ]) is the most popular one. When applied to problem eq. (2.14), the DR algorithm asymptotically
computes a solution by repeating the following steps, with k = 0, 1, . . . and given initial point θ0 = (θ(1),0, . . . , θ(M),0)
and prox-parameter ρ > 0: 

πk+1 = argmin
π

g(π) +
ρ

2
∥π − θk∥2

π̂k+1 = argmin
π

f(π) +
ρ

2
∥π − (2πk+1 − θk)∥2

θk+1 = θk + π̂k+1 − πk+1.

(2.15)

By noting that f and g in eq. (2.13b) are lower semicontinuous convex functions and problem eq. (2.13) is solvable,
the following is a direct consequence of Theorem 25.6 and Corollary 27.4 of [3].

Theorem 1. The sequence {θk} produced by the DR algorithm eq. (2.15) converges to a point θ̄, and the following
holds:

• π̄ := argminπ g(π) + ρ
2∥π − θ̄∥2 solves eq. (2.13);

• {πk} and {π̂k} converges to π̄.

The DR algorithm is attractive when the two first steps in eq. (2.15) are convenient to execute, which is the
case in our settings. As we will shortly see, the iterate πk+1 above has an explicit formula in both balanced and
unbalanced cases, and computing π̂k+1 amounts to executing a series of independent projections onto the simplex.
This task can be accomplished exactly and efficiently by specialized algorithms.

Since f in eq. (2.13b) has an additive structure, the computation of π̂k+1 in eq. (2.15) breaks down to a series of
smaller and simpler subproblems as just mentioned. Hence, we may exploit such a structure by combining recent
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developments in DR literature to produce the following randomized version of the DR algorithm eq. (2.15), with α
the vector of weights in eq. (2.2):

πk+1 = argmin
π

g(π) +
ρ

2
∥π − θk∥2

Draw randomly m ∈ {1, 2, . . . ,M} with probability αm > 0

π̂(m),k+1 = argmin
π(m)

f (m)(π(m)) +
ρ

2
∥π(m) − (2π(m),k+1 − θ(m),k)∥2

θ(m
′),k+1 =

{
θ(m),k + π̂(m),k+1 − π(m),k+1 if m′ = m

θ(m
′),k if m′ ̸= m.

(2.16)

The randomized DR algorithm eq. (2.16) aims at reducing computational burden and accelerating the optimiza-
tion process. Such goals can be attained in some situations, depending on the underlying problem and available
computational resources.

The particular choice of αm > 0 as the probability of picking up the mth subproblem is not necessary for
convergence: the only requirement is that every subproblem is picked-up with a fixed and positive probability. The
intuition behind our choice is that measures that play a more significant role in the objective function of eq. (2.6) (i.e.,
higher αm) should have more chance to be picked by the randomized DR algorithm. Furthermore, the presentation
above where only one measure (subproblem) in eq. (2.16) is drawn is made for the sake of simplicity. One can
perfectly split the set of measures into nb < M bundles, each containing a subset of measures, and select randomly
bundles instead of individual measures. Such an approach proves advantageous in a parallel computing environment
with nb available machines/processors (see section 2.6.2.2 in the numerical section). The almost surely (i.e., with
probability one) convergence of the randomized DR algorithm depicted in eq. (2.16) can be summarized as follows.
We refer the interest reader to Theorem 2 in [38] for the proof (see also additional comments in the Appendix of [2]).

Theorem 2. The sequence {πk} produced by the randomized DR algorithm eq. (2.16) converges almost surely to a
solution π̄ of problem eq. (2.13).

In the next section we further exploit the structure of functions f and g in eq. (2.13) and re-arrange terms in the
schemes eq. (2.15) and eq. (2.16) to provide an easy-to-implement and memory-efficient algorithm for computing
balanced and unbalanced WBs.

2.5 The Method of Averaged Marginals

Both deterministic and randomized DR algorithms above require evaluating the proximal mapping of function g
given in eq. (2.13b).

In the balanced WB setting, g is the indicator function of the balanced subspace B given in eq. (2.8). Therefore,
the solution πk+1 above is nothing but the projection of θk onto B: πk+1 = ProjB(θ

k). On the other hand, in
the unbalanced WB case, g(·) is the penalized distance function γ distB(·). Computing πk+1 then amounts to

evaluating the proximal mapping of the distance function: min
π

distB(π) +
ρ

2γ
∥π − θk∥2. The unique solution to

this problem is well-known to be given by

πk+1 =

{
ProjB(θ

k) if ρ distB(θ
k) ≤ γ

θk + γ
ρ distB(θk)

(ProjB(θ
k)− θk) otherwise.

(2.17)
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Hence, computing πk+1 in both balanced and unbalanced settings boils down to projecting onto the balanced
subspace (recall that distB(θ) = ∥ProjB(θ) − θ∥). This fact allows us to provide a unified algorithm for WB and
UWB problems.

2.5.1 Projecting onto the subspace of balanced plans

In what follows we exploit the particular geometry of B to provide an explicit formula for projecting onto this set.

Proposition 2. With the notation of Section 2.2, let θ ∈ RR×
∑M

m=1 S(m)

,

am :=
1

S(m)∑M
j=1

1
S(j)

, p(m) :=

S(m)∑
s=1

θ(m)
rs , and p :=

M∑
m=1

amp(m). (2.18a)

The (matrix) projection π = ProjB(θ) has the explicit form:

π(m)
rs := θ(m)

rs +
(pr − p

(m)
r )

S(m)
, s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M. (2.18b)

Proof. First, observe that π = ProjB(θ) solves the QP problem

min
y(1),...,y(M)

1

2

M∑
m=1

∥y(m) − θ(m),k∥2

s.t
∑S(1)

s=1 y
(1)
rs =

∑S(2)

s=1 y
(2)
rs , r = 1, . . . , R∑S(2)

s=1 y
(2)
rs =

∑S(3)

s=1 y
(3)
rs , r = 1, . . . , R

...∑S(M−1)

s=1 y
(M−1)
rs =

∑S(M)

s=1 y
(M)
rs , r = 1, . . . , R,

(2.19)

which is only coupled by the “columns” of π: there is no constraint liking π
(m)
rs with π

(m′)
r′s for r ̸= r′ andm andm′ ar-

bitrary. Therefore, we can decompose it by rows: for r = 1, . . . , R, the rth-row (π
(1)
r1 , . . . , π

(1)

rS(1) , . . . , π
(M)
r1 , . . . , π

(M)

rS(M))
of π is the unique solution to the problem

min
w

1

2

M∑
m=1

S(m)∑
s=1

(
w(m)

s − θ(m)
rs

)2
s.t

∑S(1)

s=1 w
(1)
s =

∑S(2)

s=1 w
(2)
s∑S(2)

s=1 w
(2)
s =

∑S(3)

s=1 w
(3)
s

...∑S(M−1)

s=1 w
(M−1)
s =

∑S(M)

s=1 w
(M)
s .

(2.20)

The Lagrangian function to this problem is, for a dual variable u, given by

Lr(w, u) =
1

2

M∑
m=1

S(m)∑
s=1

(
w(m)

s − θ(m)
rs

)2
+

M−1∑
m=1

u(m)
( S(m)∑

s=1

w(m)
s −

S(m+1)∑
s=1

w(m+1)
s

)
. (2.21)
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A primal-dual (w, u) solution to problem eq. (2.20) must satisfy the Lagrange system, in particular ∇wLr(w, u) = 0
with w the rth row of π = ProjB(θ), that is,

π
(1)
rs − θ

(1)
rs + u(1) = 0 s = 1, . . . , S(1)

π
(2)
rs − θ

(2)
rs + u(2) − u(1) = 0 s = 1, . . . , S(2)

...

π
(M−1)
rs − θ

(M−1)
rs + u(M−1) − u(M−2) = 0 s = 1, . . . , S(M−1)

π
(M)
rs − θ

(M)
rs − u(M−1) = 0 s = 1, . . . , S(M).

(2.22)

Let us denote pr =
∑S(m)

s=1 π
(m)
rs (no matter m ∈ {1, . . . ,M} because π ∈ B), p(m)

r =
∑S(m)

s=1 θ
(m)
rs (the rth component

of p(m) as defined in eq. (2.18a)), and sum, above over s, the first row of system eq. (2.22) to get

pr − p(1)r + u(1)S(1) = 0 ⇒ u(1) =
p
(1)
r − pr
S(1)

, (2.23)

Now, by summing the second row in eq. (2.22) over s we get

pr − p(2)r + u(2)S(2) − u(1)S(2) = 0 ⇒ u(2) = u(1) +
p
(2)
r − pr
S(2)

. (2.24)

By proceeding in this way and setting u(0) := 0 we obtain

u(m) = u(m−1) +
p
(m)
r − pr
S(m)

, m = 1, . . . ,M − 1. (2.25a)

Furthermore, for M − 1 we get the alternative formula u(M−1) = −p(M)
r −pr

S(M) . Given these dual values, we can use

eq. (2.22) to conclude that the rth row of π = ProjB(θ) is given as in eq. (2.18b). It is remaining to show that

pr =
∑S(m)

s=1 π
(m)
rs , as defined above, is alternatively given by eq. (2.18a). To this end, observe that u(M−1) =

u(M−1) − u(0) =
∑M−1

m=1 (u
(m) − u(m−1)), so:

u(M−1) =

M−1∑
m=1

(p(m)
r − pr
S(m)

)
=

M−1∑
m=1

p
(m)
r

S(m)
− pr

M−1∑
m=1

1

S(m)
. (2.26)

Recall that u(M−1) =
pr−p(M)

r

S(M) , i.e., pr = p
(M)
r +u(M−1)S(M). Replacing u(M−1) with the expression eq. (2.26) yields

pr = S(M)
[ p(M)

r

S(M)
+ u(M−1)

]
= S(M)

[ p(M)
r

S(M)
+

M−1∑
m=1

p
(m)
r

S(m)
− pr

M−1∑
m=1

1

S(m)

]
, (2.27)

which implies pr
∑M

m=1
1

S(m) =
∑M

m=1

(
p(m)
r

S(m)

)
. Hence, p is as given in eq. (2.18a), and the proof is thus complete.

Note that projection can be computed in parallel over the rows, and the average p of the marginals p(m) is the
gathering step between parallel processors.
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2.5.2 Evaluating the Proximal Mapping of Transportation Costs

In this subsection we turn our attention to the DR algorithm’s second step, which requires solving a convex
optimization problem of the form: minπ f(π) + ρ

2∥π − y∥2 (see eq. (2.15)). Given the addictive structure of f
in eq. (2.13b), the above problem can be decomposed into M smaller ones

min
π(m)

f (m)(π(m)) +
ρ

2
∥π(m) − y(m)∥2, m = 1, . . . ,M. (2.28)

Then looking closely at every subproblem above, we can see that we can decompose it even more: the columns of
the the transportation plan π(m) are independent in the minimization. Besides, as the following result shows, every
column optimization is simply the projection of an R-dimensional vector onto the simplex ∆R.

Proposition 3. Let ∆R(τ) be as in eq. (2.1). The proximal mapping π̂ := minπ f(π)+ ρ
2∥π− y∥2 can be computed

exactly, in parallel along the columns of each transport plan y(m), as follows: for all m ∈ {1, . . . ,M},
π̂
(m)
1s
...

π̂
(m)
Rs )

 = Proj
∆R(q

(m)
s )


y1s − 1

ρd
(m)
1s

...

yRs − 1
ρd

(m)
Rs

 , s = 1, . . . , S(m). (2.29)

Proof. It has already argued that evaluating this proximal mapping into M smaller subproblems eq. (2.28), which
is a quadratic program problem due to the definition of f (m) in eq. (2.12): min

π(m)≥0

R∑
r=1

S(m)∑
s=1

[
d(m)
rs π(m)

rs +
ρ

2
∥π(m)

rs − y(m)
rs )∥2

]
s.t.

∑R
r=1 π

(m)
rs = q

(m)
s , s = 1, . . . , S(m).

. (2.30)

By taking a close look at the above problem, we can see that the objective function is decomposable, and the
constraints couple only the “rows” of π(m). Therefore, we can go further and decompose the above problem per
columns: for s = 1, . . . , S(m), the sth-column of π̂(m) is the unique solution to the R-dimensional problem min

w≥0

R∑
r=1

[
d(m)
rs wr +

ρ

2
(wr − y(m)

rs )2
]

s.t.
∑R

r=1 wr = q
(m)
s ,

(2.31)

which is nothing but eq. (2.29). Such projection can be performed exactly [17].

Remark 1. If τ = 0, then ∆R(τ) = {0} and the projection onto this set is trivial. Otherwise, τ > 0 and computing
Proj∆R(τ)(w) amounts to projecting onto the R + 1 simplex ∆R: Proj∆R(τ)(w) := τ Proj∆R

(w/τ). The
latter task can be performed exactly by using efficient methods [17]. Hence, evaluating the proximal mapping in

proposition 3 decomposes into
∑M

m=1 S
(m) independent projections onto ∆R.

2.5.3 The Method of Averaged Marginals (MAM)

Putting propositions 2 and 3 together with the general lines of DR algorithm eq. (2.15) and rearranging terms we
provide below an easy-to-implement and memory efficient algorithm for computing barycenters. The pseudo code
for this algorithm is presented in algorithm 2. The algorithm gathers the DR’s three main steps and integrates
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an option in case the problem is unbalanced, since treating the Wasserstein barycenter problem the way we did,
enables to easily switch from the balanced to the unbalanced case. Note that part of the first DR step has been
placed at the end of the while-loop iteration in a storage optimization purpose that will be discussed in the following
paragraphs. In the following algorithm, the vector α ∈ ∆M of weights is included in the distance matrix definition,
as done in eq. (2.12). Some comments on algorithm 2 are in order.

Algorithm 2 Method of Averaged Marginals - MAM

▷ Step 0: input

1: Given ρ > 0, the distance matrix and initial point d, θ0 ∈ RR×
∑M

m=1 S(m)

, and a ∈ ∆M as in eq. (2.18a), set

k ← 0 and p
(m)
r ←

∑S(m)

s=1 θ
(m),0
rs , r = 1, . . . , R, m = 1, . . . ,M

2: Set γ ←∞ if q(m) ∈ RS(m)

+ , m = 1, . . . ,M , are balanced; otherwise, choose γ ∈ [0,∞[

3: while not converged do
▷ Step 1: average the marginals

4: Compute pk ←
∑M

m=1 amp(m)

5: Set tk = 1 if ρ
√∑M

m=1
∥pk−p(m)∥2

S(m) ≤ γ; otherwise, tk ← γ/

(
ρ
√∑M

m=1
∥pk−p(m)∥2

S(m)

)
6: Choose an index set ∅ ≠Mk ⊆ {1, . . . ,M}
7: for m ∈Mk do

▷ Step 2: update the mth plan
8: for s = 1, . . . , S(m) do

9: Define wr ← θ
(m),k
rs + 2 tk

pk
r−p(m)

r

S(m) − 1
ρd

(m)
rs , r = 1, . . . , R

10: Compute (π̂
(m)
1s , . . . , π̂

(m)
Rs )← Proj

∆R(q
(m)
s )

(w)

11: Update θ
(m),k+1
rs ← π̂

(m)
rs − tk

pk
r−p(m)

r

S(m) , r = 1, . . . , R
12: end for

▷ Step 3: update the mth marginal

13: Update p
(m)
r ←

∑S(m)

s=1 θ
(m),k+1
rs , r = 1, . . . , R

14: end for

15: end while
16: Return p̄← pk

MAM’s interpretation A simple interpretation of the Method of Averaged Marginals is as follows: at every
iteration the barycenter approximation pk is a weighted average of the M marginals p(m) of the plans θ(m),k,
m = 1, . . . ,M . As we will shortly see, the whole sequence {pk} converges (almost surely or deterministically) to an
exact barycenter upon specific assumptions on the choice of the index set at line 6 of algorithm 2.

Initialization The algorithm initialization, the choices for θ0 ∈ RR×
∑M

m=1 S(m)

and ρ > 0 are arbitrary ones.
The prox-parameter ρ > 0 is borrowed from the DR algorithm, which is known to has an impact on the practical
convergence speed. Therefore, ρ should be tuned for the set of distributions at stakes. Some heuristics for tuning
this parameter exist for other methods derived from the DR algorithms [68, 70] and can be adapted to the setting
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of algorithm 2.

Stopping criteria A possible stopping test for the algorithm, with mathematical justification, is to terminate
the iterative process as soon as ∥θk+1 − θk∥∞ ≤ Tol, where Tol > 0 is a given tolerance. In practical terms, this

test boils down to checking whether |θ(m),k
rs + tk(pkr − p

(m)
r )/S(m)− π̂rs| ≤ Tol, for all r = 1, . . . , R, s = 1, . . . , S(m),

and all m = 1, . . . ,M . Alternatively, we may stop the algorithm when ∥pk+1 − pk∥ is small enough. The latter
should be understood as a heuristic criterion.

Deterministic and random variants of MAM The most computationally expensive step of MAM is Step 2,
which requires a series of independent projections onto the R+1 simplex (see remark 1). Our approach underlines
that this step can be conducted in parallel over s or, if preferable, over the measures m. As a result, it is a
natural idea to derive a randomized variant of algorithm. This is the reason for having the possibility of choosing
an index set Mk ⊆ {1, . . . ,M} at line 6 of algorithm 2. For example, we may employ an economical rule and
choose Mk = {m} randomly (with a fixed and positive probability, e.g. αm) at every iteration, or the costly one
Mk = {1, . . . ,M} for all k. The latter yields the deterministic method of averaged marginals, while the former gives
rise to a randomized variant of MAM. Depending on the computational resources, intermediate choices between
these two extremes can perform better in practice.

Remark 2. Suppose that 1 < nb < M processors are available. We may then create a partition A1, . . . , Anb of the
set {1, . . . ,M} (= ∪nbi=1Ai) and define weights βi :=

∑
m∈Ai

αm > 0. Then, at every iteration k, we may draw with

probability βi the subset Ai of measures and setMk = Ai.

This randomized variant would enable the algorithm to compute more iterations per time unit but with less
precision per iteration (since not all the marginals p(m) are updated). Such a randomized variant of MAM is
benchmarked against its deterministic counterpart in section 2.6.2.2, where we demonstrate empirically that with
certain configurations (depending on the number M of probability distributions and the number of processors) this
randomized algorithm can be effective.
We highlight that other choices for Mk rather than randomized ones or the deterministic rule Mk = {1, . . . ,M}
should be understood as heuristics. Within such a framework, one may chooseMk ⊆ {1, . . . ,M} deterministically,
for instance cyclically or yet by the discrepancy of the marginal p(m) with respect to the average pk.

Storage complexity Note that the operation at line 10 is trivial if q
(m)
s = 0. This motivates us to remove all the

zero components of q(m) from the problem’s data, and consequently, all the columns s of the distance matrix d(m)

and variables θ, π̂ corresponding to q
(m)
s = 0, m = 1, . . . ,M . In some applications (e.g. general sparse problems),

this strategy significantly reduces the WB problem and thus memory allocation, since the non taken columns are
both not stored and not treated in the for loops. This remark raises the question of how sparse data impacts the
practical performance of MAM. Section 2.6.1 conducts an empirical analysis on this matter.

In nominal use, the algorithm needs to store the decision variables θ(m) ∈ RR×S(m)

for all m = 1, . . . ,M

(transport plans for every measure), along with M distance matrices d ∈ RR×S(m)

, one barycenter approximation
pk ∈ RR, M approximated marginals p(m) ∈ RR and M marginals q(m) ∈ RS(m). Note that in practical terms, the
auxiliary variables w and π̂ in algorithm 2 can be easily removed from the algorithm’s implementation by merging
lines 9-11 into a single one. Hence, for T :=

∑M
m=1 S

(m), the method’s memory allocation is 2RT + T +M(R+ 1)

floating-points. This number can be reduced if the measures share the same distance matrix, i.e., d(m) = d(m
′) for

all m,m′ = 1, . . . ,M . In this case, S(m) = S for all m, T = M S and the method’s memory allocation drops to
RT +RS+T +M(R+1) floating-points. Within the light of the previous remark this memory complexity should
be treated as an upper bound: the sparser are the data the less memory will be needed.

22



D. Mimouni

Balanced and unbalanced settings As already mentioned, our approach can handle both balanced and unbal-
anced WB problems. All that is necessary it to choose a finite (positive) value for the parameter γ in the unbalanced
case. Such a parameter is only used to define tk ∈ (0, 1] at every iteration. Indeed, algorithm 2 defines tk = 1 for

all iterations if the WB problem is balanced (because γ = ∞ in this case)5, and tk = γ/

(
ρ
√∑M

m=1
∥pk−p(m)∥2

S(m)

)
otherwise. This rule for setting up tk is a mere artifice to model eq. (2.17). Indeed, distB(θ

k) = ∥ProjB(θk)− θk∥
reduces to

√∑M
m=1

∥pk−p(m)∥2

S(m) thanks to proposition 2.

Convergence analysis The convergence analysis of algorithm 2 can be summarized as follows.

Theorem 3 (MAM’s convergence analysis). a) (Deterministic MAM.) Consider algorithm 2 with the choice
Mk = {1, . . . ,m} for all k. Then the sequence of points {pk} generated by the algorithm converges to a
point p̄. If the measures are balanced, then p̄ is a balanced WB; otherwise, p̄ is a γ-unbalanced WB.

b) (Randomized MAM.) Consider algorithm 2 with the choice Mk ⊆ {1, . . . ,m} as in remark 2. Then the
sequence of points {pk} generated by the algorithm converges almost surely to a point p̄. If the measures are
balanced, then p̄ is almost surely a balanced WB; otherwise, p̄ is almost surely a γ-unbalanced WB.

Proof. It suffices to show that algorithm 2 is an implementation of the (randomized) DR algorithm and invoke
theorem 1 for item a) and theorem 2 for item b). To this end, we first rely on proposition 2 to get that the projection

of θk onto the balanced subspace B is given by θ
(m),k
rs +

(pk
r−p(m)

r )

S(m) , s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M ,

where pk is computed at Step 1 of the algorithm, and the marginals p(m) of θk are computed at Step 0 if k = 0

or at Step 3 otherwise. Therefore, distB(θ
k) = ∥ProjB(θk) − θk∥ =

√∑M
m=1

∥pk−p(m)∥2

S(m) . Now, given the rule

for updating tk in algorithm 2 we can define the auxiliary variable πk+1 as πk+1 = θk + tk(ProjB(θ
k) − θk), or

alternatively,

π(m),k+1
rs = θ(m),k

rs + tk
(pkr − p

(m)
r )

S(m)
, s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M. (2.32)

In the balanced case, tk = 1 for all k (because γ = ∞) and thus πk+1 is as in eq. (2.18b). Otherwise, πk+1 is as
in eq. (2.17) (see the comments after algorithm 2). In both cases, πk+1 coincides with the auxiliary variable at the
first step of the DR scheme eq. (2.15) (see the developments at the beginning of this section). Next, observe that
to perform the second step of eq. (2.15) we need to assess y = 2πk+1− θk, which is thanks to the above formula for

πk+1 given by y
(m)
rs = θ

(m),k
rs + 2 tk

pk
r−p(m)

r

S(m) , s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M .

As a result, for the choice Mk = {1, . . . ,M} for all k, Step 2 of algorithm 2 yields, thanks to proposition 3,
π̂k+1 as at the second step of eq. (2.15). Furthermore, the updating of θk+1 in the latter coincides with the rule in
algorithm 2: for s = 1, . . . , S(m), r = 1, . . . , R, and m = 1, . . . ,M ,

θ(m),k+1
rs = θ(m),k

rs + π̂(m),k+1
rs − π(m),k+1

rs = θ(m),k
rs + π̂(m),k+1

rs −

(
θ(m),k
rs + tk

(pkr − p
(m)
r )

S(m)

)

= π̂(m),k+1
rs − tk

(pkr − p
(m)
r )

S(m)
.

Hence, for the choice Mk = {1, . . . ,M} for all k, algorithm 2 is the DR Algorithm eq. (2.15) applied to the
WB eq. (2.13). theorem 1 thus ensures that the sequence {πk} as defined above converges to some π̄ solving

5Observe that line 5 can be entirely disregarded in this case, by setting tk = t = 1 fixed at initialization.
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eq. (2.13). To show that {pk} converges to a barycenter, let us first use the property that B is a linear subspace to
obtain the decomposition θ = ProjB(θ)+ProjB⊥(θ) that allows us to rewrite the auxiliary variable πk+1 differently:
πk+1 = θk+tk(ProjB(θ

k)−θk) = θk−tkProjB⊥(θk). Let us denote π̃k+1 := ProjB(π
k+1). Then π̃k+1 = ProjB(θ

k−
tkProjB⊥(θk)) = ProjB(θ

k), and thus proposition 2 yields π̃
(m),k+1
rs = θ

(m),k
rs +

pk
r−p(m)

r

S(m) s = 1, . . . , S(m), r = 1, . . . , R,

m = 1, . . . ,M , which in turn gives (by recalling that
∑S(m)

s=1 θ
(m),k
rs = p

(m)
r ):

∑S(m)

s=1 π̃
(m),k+1
rs = pkr , r = 1, . . . , R,

m = 1, . . . ,M . As limk→∞ πk = π̄, limk→∞ π̃k = limk→∞ ProjB(π
k) = ProjB(π̄) =: π̃. Therefore, for all

r = 1, . . . , R, m = 1, . . . ,M , the following limits are well defined:

p̄r :=

S(m)∑
s=1

π̃(m)
rs = lim

k→∞

S(m)∑
s=1

π̃(m),k+1
rs = lim

k→∞
pkr . (2.33)

We have shown that the whole sequence {pk} converges to p̄. By recalling that π̄ solves eq. (2.13), we conclude
that in the balanced setting π̃ = π̄ and thus p̄ is a WB according to definition 4. On the other hand, in the
unbalanced setting, p̄ above is a γ-unbalanced WB according to definition 6.

The proof of item b) is a verbatim copy of the above proof: the sole difference, given the assumptions on the
choice of Mk, is that we need to rely on theorem 2 (and not on theorem 1 as previously done) to conclude that
{πk} converges almost surely to some π̄ solving eq. (2.13). Thanks to the continuity of the orthogonal projection
onto the subspace B, the limits above yield almost surely convergence of {pk} to a barycenter p̄.

2.6 Numerical Experiments

This section illustrates the MAM’s practical performance on some well-known datasets. The impact of different
data structures is studied before the algorithm is compared to state-of-the-art methods. This section closes with an
illustrative example of MAM to compute UWBs. Numerical experiments were conducted using 20 cores (Intel(R)
Xeon(R) Gold 5120 CPU ) and Python 3.9. The test problems and solvers’ codes are available from download in
the link https://ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb.

2.6.1 Study on data structure influence

We start by evaluating the impact of conditions that influence the storage complexity and the algorithm perfor-
mance. The main conditions are the sparsity of the data and the number of distributions M . Indeed, on the one
hand, the denser are the distributions, the greater RAM would be needed to store the data per transport plan (see
the management of storage complexity in Section 2.5.3). On the other hand, the more distributions are treated,
the more transport plans would be stored. In both of these configurations, the time per iteration is meant to
grow, either because a processor would need to project more columns onto the respected simplex within Step 2, or
because Step 2 is repeated as many time as the number of distribution M (see algorithm 2). The dataset at hand,
inspired from [9, 20], has been naturally built to control the sparsity (or respectively, density) of the distributions
(see section 2.6.1 and section 2.6.1). Note that each image is normalized making it a representation of a probability
distribution. The density of a dataset is controlled by the number of nested ellipses: as exemplified in section 2.6.1
and section 2.6.1, measures with only a single ellipse are very sparse, while a dataset with 5 nested ellipses is denser.

In this first experiments we analyze the impact over MAM caused by the sparsity and number of measures. We
have set ρ = 100 without proper tuning for every dataset. The study has been carried out with one processor to
avoid CPU communication management.
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Figure 2.1: Sample of the artificial nested ellipses datasets. First column is taken from the first dataset with 1
ellipse, second columns from the second dataset with 2 nested ellipses, until the sixth column with 6 nested ellipses.

Table 2.1: Mean density with the number of nested ellipses. The density has been calculated by averaging the
ratio of non-null pixel per images over 100 generated pictures for each dataset sharing the same number nellipses of
nested ellipses.

nellipses 1 2 3 4 5 6

Density (%) 29.0 51.4 64.3 70.9 73.5 75.0

section 2.6.1 shows that, as expected, the execution time of an iteration increases with increasing density and
number of measures. When compared to density it can be seen that the number of measures has greater influence on
the method’s speed (such a phenomenon can be due to the numpy matrix management). This means the quantity
of information in each measure does not seem to make the algorithm less efficient in term of speed. Such a result is
to be put in regard with algorithms such as B-ADMM [72] that are particularly shaped for sparse dataset but less
efficient for denser ones. This is a significant point that will be further developed in Section 2.6.2.3.

2.6.2 Comparison with IBP

The Iterative Bregman Projection (IBP) [9] is a state-of-the-art algorithm for computing Wasserstein barycenters.
As mentionned in the Introduction, IBP employes a regularizing function parametrized by λ > 0. The greater the
λ, the worst the approximation. But in practice, λ has to be kept in a moderate magnitude to avoid numerical
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Figure 2.2: Evolution of the number of iterations per minute depending on the density or the number of distributions.
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errors (double-precision overflow). IBP is very sensitive to λ, that strongly relies on the dataset at stake. Thus
IBP is an inexact method, whereas MAM is exact. Although the study below shows certain advantages of MAM,
we make it clear that the aim is not to demonstrate which algorithm is better in general but instead to highlight
the differences between the two methods and their advantages depending on the use. Note that the code for IBP is
inspired from the original [49].

2.6.2.1 Qualitative comparison

Here we use 100 images per digit of the MNIST database [65] where each digit has been randomly translated and
rotated. Each image has 40 × 40 pixels and can be treated as probability distributions thanks to a normalization,
where the pixel location is the support and the pixel intensity the probability. In section 2.6.2.1, we display inter-
mediate barycenter solutions for digits 3, 4, 5 at different time steps both for MAM and IBP. For the two methods
the hyperparameters have been tuned: for instance, λ = 1700 is the greatest lambda that enables IBP to compute
the barycenter of the 3’s dataset without double-precison overflow error. Regarding MAM, a range of values for
ρ > 0 have been tested for 100 seconds of execution, to identify which one provides good performance (for example,
ρ = 50 for the dataset of 3’s).

As illustrated in section 2.6.2.1, for each dataset, IBP gets quickly to a stable approximation of a barycenter.
Such a point is obtained shortly after with MAM (less than 5 to 10 seconds after) but MAM continues to converge
toward a sharper solution (closer to the exact solution as exemplified quantitatively in section 2.6.2.2). It is clear
that the more CPUs used for MAM the better. We have limited the study to a dozen of CPU to allow the reader
to reproduce the experimentations. While IBP is not well shaped for CPU parallelization [9, 49,72], MAM offers a
clear advantage depending on the hardware at stake.

2.6.2.2 Quantitative comparison

Next we benchmark MAM, randomized MAM and IBP on a dataset with 60 images per digit of the MNIST
database [65] where every digit is a normalized image 40 × 40 pixels. First, all three methods have their hyperpa-
rameters tuned thanks to a sensitivity study as explained in Section 2.6.2.1. Then, at every time step an approxi-
mation of the computed barycenter is stored, to compute the error W̄ 2

2 (p
k)− W̄ 2

2 (pexact) :=
∑M

m=1
1
M OT(pk, q(m))−∑M

m=1
1
M OT(pexact, q

(m)). All methods were implemented in python using a MPI based parallelization. Note that
IBP is inspired from the code of G. Peyré [49], MAM from algorithm 2 and MAM-randomized (remark 2) has
only one distribution treated by processor. section 2.6.2.2 displays the evolution w.r.t time, of the error measure
W̄ 2

2 (p
k)− W̄ 2

2 (pexact), with pexact an exact barycenter obtained by solving LP eq. (2.7) directly.
It is clear that IBP is almost 10 time faster per iteration. However IBP computes an exact solution of an

approximated problem that is tuned through the hyperparameter λ (see [9]). Therefore it is natural to witness IBP
converging to a solution to the approximated problem, but not to an exact WB. While MAM does converge to an
exact solution. So there is a threshold where the accuracy of MAM exceeds IBP: in our case, around 200s - for the
computation with the greatest number of processors (see section 2.6.2.2). Such a treshold always exists depending
on the computational means (hardware).
This quantitative study explains what have been exemplified with the images of Section 2.6.2.1: the accuracy of
IBP is bounded by the choice of λ, itself bounded by an overflow error, while MAM hyperparameters only impact
the convergence speed and the algorithm is always improving towards an exact solution. For this dataset, the WB
computed by IBP is within 2% of accuracy and thus reasonably good. However, as shown in Table 1 in [72], one
can choose other datasets where IBP’s accuracy might be unsatisfactory.

Furthermore, section 2.6.2.2 exemplifies an interesting asset of randomized variants of MAM: for some configu-
rations randomized-MAM is more efficient than (deterministic) MAM but for others, the latter seems to be more
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Figure 2.3: (top) For each digit 36 out of the 100 scaled, translated and rotated images considered for each
barycenter. (bottom) Barycenters after t = 10, 50, 500, 1000, 2000 seconds, where the left-hand-side is IBP evolution
of its barycenter approximation, the middle panel is MAM evolutions using 10 CPU and the right-hand-side is the
exact solution computed by applying Gurobi to the LP eq. (2.7).

effective. Note that the curve MAM 1-random, 1 processor does not appear on the figure: this is because it is above
the y-axis value range due to its bad performance. Indeed, there is a trade-off between time spent per iteration
and precision gained after an iteration. For example, with 10 processors, each processor treats 6 measures in the
deterministic MAM but only one is treated in the randomized MAM. Therefore, the time spent per iteration is
roughly six time shorter in the latter and this counterbalances the loss of accuracy per iterations. On the other
hand, when using 20 processors, only 3 measures are treated by each processor and the trade-off is not worth it
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Figure 2.4: Evolution with respect to time of the difference between the Wasserstein barycenter distance of an
approximation, W̄ 2

2 (p
k), and the Wasserstein barycentric distance of the exact solution W̄ 2

2 (pexact) given by the LP.
The time step between two points is 30 seconds.

anymore: the gain in time does not compensate for the loss in accuracy per iteration. One should adapt the use
of the algorithm with care since this trade-off conclusion is only heuristic and strongly depends on the dataset and
hardware at use. A sensitivity analysis is always a good thought for choosing the most effective amount of measures
handled per processor while using the randomized-MAM against the deterministic MAM.

2.6.2.3 Influence of the support

This section is echoing Section 2.6.1 and studies the influence of the support size. To do so, two datasets have
been tested for MAM and IBP. The first dataset is already used in section 2.6.2.2: 60 pictures of 3’s taken from
the classic MNIST database [65]. The second dataset is also composed by these 60 images but each digit has been
randomly translated and rotated in the same way as in section 2.6.2.1. Therefore, the union of the support of the
second dataset is greater than the first one, as illustrated in section 2.6.2.3.

section 2.6.2.3 presents two graphs that have been obtained just as in section 2.6.2.2, but displaying the evolution

w.r.t time in percentage: ∆W% :=
W̄ 2

2 (p
k)−W̄ 2

2 (pexact)

W̄ 2
2 (pexact)

×100. Once more, the hyperparameters have been fully tuned.

The hyperparameter of the IBP method is smaller for the second datacase. Indeed, as stated in [72], the greater
is the support, the stronger are the restrictions on λ. And since the smaller is λ the further is the approximated
problem to the exact one this is expected to witness rising differences between on the following graphs.

Being an exact method, MAM is insensitive to support size. The density of the dataset has little impact on the
convergence time as explained in Section 2.6.1 and exemplified in section 2.6.2.3. Such visual results concerning
IBP initialization and parametrization have already been discussed in section 2.6.2.1, some other qualitative results
can be found in [55] where the author shows that properties of the distributions can be lost due to the entropy
penalization in IBP.
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Figure 2.5: Images with 40×40 pixel grid, where the red represents the pixels which are in the union of the dataset
support composed with 60 images. (left) for the standard MNIST, (right) for the randomly translated and rotated
MNIST.

Figure 2.6: Evolution of the percentage of the distance between the exact solution of the barycenter problem and
the computed solution using IBP and MAM method with 20 processors: (left) for the standard MNIST, (right) for
the randomly translated and rotated MNIST.

2.6.3 Comparison with B-ADMM

This subsection compares MAM with the algorithm B-ADMM of [67] using the dataset and Matlab implementation
provided by the authors at the link https://github.com/bobye/d2_kmeans. We omit IBP in our analysis because
it has already been shown in [67, Table I] that IBP is outperformed by B-ADMM in this dataset. As in [67, Section
IV], we consider M = 1000 discrete measures, each with a sparse finite support set obtained by clustering pixel
colors of images. The average number of support points is around 6, and the barycenter’s number of (fixed) support
points is R = 60. An exact WB can be computed by applying an LP solver to the extensive formulation eq. (2.7). Its
optimal value is 712.7, computed in 10.6 seconds by the Gurobi LP solver. We have coded MAM in Matlab to have
a fair comparison with the Matlab B-ADMM algorithm provided at the above link. Since MAM and B-ADMM
use different stopping tests, we have set their stopping tolerances equal to zero and let the solvers stop with a
maximum number of iterations. table 2.2 below reports CPU time in seconds and the objective values yielded by
the (approximated) barycenter p̃ computed by both solvers: W̄ 2

2 (p̃).
The results show that, for the considered dataset, MAM and B-ADMM are comparable regarding CPU time,

with MAM providing more precise results. In contrast with MAM, B-ADMM does not have (at this time) a
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Table 2.2: MAM vs B-ADMM. The considered implementation of B-ADMM is the one provided by its designers
without changing parameters (except the stopping set to zero and the maximum number of iterations). Both
algorithms use the same initial point. The dataset is the one considered in [67, Section IV]. The optimal value of
the WB barycenter for this dataset is 712.7, computed by Gurobi in 10.6 seconds.

Iterations
Objective value Seconds

B-ADMM MAM B-ADMM MAM
100 742.8 716.7 1.1 1.1
200 725.9 714.1 2.4 2.2
500 716.5 713.3 5.6 5.4
1000 714.1 712.9 11.8 10.8
1500 713.5 712.8 18.9 16.2
2000 713.3 712.8 25.1 21.6
2500 713.2 712.8 31.0 27.1
3000 713.1 712.7 39.8 32.4

convergence analysis.

2.6.4 Unbalanced Wasserstein Barycenter

This section treats a particular example to illustrate the interest of using UWB. The artificial dataset is composed by
50 images with resolution 80×80. Each image is divided in four squared. The top left, bottom left and bottom right
squared are randomly filled with double nested ellipses and the top right squared is always empty as exemplified in
section 2.6.4. In this example, every image is normalized to depict a probability measure so that we can compare
WB and UWB.

Figure 2.7: Dataset composed by 50 pictures with nested ellipses randomly positionned in the top left, bottom right
and left corners.
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With respect to eq. (2.10), one set of constraints is relaxed and the influence of the hyperparameter γ is
studied. If γ is large enough (i.e. greater than ∥vec(d)∥ ≈ 1000, see proposition 1), the problem boils down to
the standard WB problem since the example deals with probability measures: the resulting UWB is indeed a WB.
When decreasing γ the transportation costs take more importance than the distance to B that is more and more
relaxed. Therefore, as illustrated by section 2.6.4, the resulting UWB splits the image in four parts, giving visual
meaning to the barycenter.

Figure 2.8: UWB computed with MAM for different values of γ.

In the same vein, section 2.6.4 provides an illustrative application of MAM for computing UWB in another
dataset.

Figure 2.9: (left) UWB for a dataset of letters M-A-M built in the same logic than section 2.6.4 with 50 figures:
(right) resulting UWB with γ = 0.01, computed in 200 seconds using 10 processors.
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Chapter 3

The scenario Tree Reduction Problem

3.1 The Kovacevic and Pichler’s approach (KP)

In [51], the author introduced the Nested Distance (ND), which is built on the Wasserstein distance, exploiting its
structure and extending it to accommodate the specific characteristics of stochastic processes (see also [52]). It is
a tailor-made measure for stochastic processes: it inherits the foundational properties of the Wasserstein distance,
such as its sensitivity to local structure and robustness to outliers, while providing a more nuanced and specialized
measure for comparing the similarities between different realizations of stochastic processes.

3.1.1 Nested distance

Let P := (Ξ, (F), P ) and P′ := (Z, (F ′), P ′) be two filtered probability spaces with finite moment of order ι with
respect to a distance d : Ξ × Ξ′ → R, such that Ξ := {ξ(1), . . . , ξ(R)} and Z := {ζ(1), . . . , ζ(S)} are the quantizer
values.

Definition 7 (Discrete Nested Distance). For ι ∈ [1,∞), the process distance of order ι, between P and P′ is the
ιth root of the optimal value of the following LP, known as the discrete Nested Distance (ND):

dlι(P,P′)ι :=



min
π

∑
ξ∈Ξ

∑
ζ∈Z

d(ξ, ζ)ιπ(ξ, ζ)

s.t. π(M × Z|Ξt ⊗ Zt) = P (M |Ft), (M ∈ FT , t = 0, . . . , T )
π(Ξ×N |Ξt ⊗ Zt) = P ′(N |F ′

t), (N ∈ F ′
T , t = 0, . . . , T )

π ≥ 0.

(ND)

In this problem the minimum is among all bivariate probability measures π ∈ P(Ξ, Z).
Note that eq. (ND) is a generalization of the Wasserstein distance (see Definition 9). Indeed, the transport plan
π does not only respect the marginals imposed by P and P ′, but also respect the conditional marginals. This
constraint is responsible for the filtration of the trees being taken into account in this distance.

3.1.2 Scenario trees and notations

A T-period scenario tree (N , A) is a discrete form of a random process ξ0(ω), . . . , ξT (ω) where ξt(ω) ∈ Ξ ⊂ Rd, t =
0, . . . , T . For the scenario tree there is only one root node associated with the value ξ0(ω), for all ω ∈ Ω. It is
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accepted to call the vertices N , nodes [53]. In fact, the notion of atoms, seen in eq. (1.12), corresponds to the nodes
in what follows. To one node n, one can biunivoquely associate a stage t and an element of the t-partition Ãt:
∀n ∈ N ,∃!(t, A) : A ∈ Ãt. For clearer understanding, we introduce the following notations:

S(n) := t (3.1)

Ã(n) := A ∈ ÃS(n) (3.2)

Thus, we denote the value taken by the process ξ ∈ Ξ at node n by ξt(ω) = ξ(n), reciproquely ξ(n) = ξS(n)(Ã(n)).

There is no ambiguity in defining the value of the processus at a stage for the set Ã(n) because all of its elements
have the same value for ξS(n) per definition. A node m ∈ N is a direct predecessor or parent of the node n ∈ N , if
(m,n) ∈ A. This relation is embodied by the notation m = n−. Reciprocally, n is a direct successor (or children)
of m and this set is denoted m+, such that n ∈ m+ if and only if m = n−. In the same vein, we denote the
predecessors (or ancestors) of n ∈ N as A(n): if m1 = m2− and m2 = n− (equivalently n ∈ m2+ and m2 ∈ m1+),
then m1,m2 ∈ A(n). We consider only trees with a single root, denoted by 0, i.e., 0− = ∅, but the methods
developped here can be generalized for multi root trees (forests). Nodes n ∈ N without successor nodes (i.e.,
n+ = ∅) are called leaf nodes. For every leaf node n there is a sequence (n0, . . . , nt, . . . , n) where n0 ∈ A(n1),
n1 ∈ A(n2) etc, from the root to the leaf node n (note that n := nT ) composed by T nodes. Each of these sequence
corresponds a unique event ω ∈ Ω.
We denote the probabilities, assigned to node n, by P (n) and we denote conditional probabilities between successors
by P (n|m) = P (n)/P (m) for m = n−. Furthermore, using a distance d, we denote the distance between two
processes as:

dn1n2 := d(ξ[S(n1)](Ã(n1)), ξ[S(n2)](Ã(n2)) (3.3)

If the problem is considered from another point of view: Let’s be a scenario tree, composed by R scenarios
ωr := (nr0 , ..., nrt , ...nrT ), for r = 1, . . . , R. Each scenario is a stochastic process in finite time, with a probability
P (ωr) = P (nrT ). Note that we denoted as sequence of T nodes this scenario, where the path is (nr0 , nr1 , . . . , nrT )
with nr0 ∈ A(nr1), nr1 ∈ A(nr2) ... and nrT−1

∈ A(nrT ). We coupled each node with a value and a probability.
These values are ξ(nrt), the values of the stochastic process. Then, the whole scenario tree can be described with
ξ: a random vector, with the realization (ξ(nrt))t∈{0,...,T} having a probability measure µ, such that µ : ωr 7−→
P (ξ(nrT )).
Knowing that a scenario tree can be described as a random vector ξ having a probability measure µ, it can be
compared to another scenario tree with a distance function defined between probability distributions such as the
Wasserstein distance. In fact, the Wasserstein distance has been widely employed to compare trees and is the base
of a lot of reduction tree methods. But it can be intuitively shown that it is not suitable to distinguish stochastic
processes with different flows of information (see 2.1 in [41]). When comparing trees, we do not want to only
compare the scenarios but the scenarios and the filtration affiliated to them. While the Wasserstein distance is
efficient to compare probability distributions, it is not fitted to take into account the evolution of the available
information along the stages of stochastic processes [36,41]. On the other hand, the Nested Distance is able to take
explicitly into account this flow of increasing information being a generalization of the Wasserstein Distance.

3.1.3 Nested Distance for Trees

Using the tree notations introduced in Section 3.1.2, we can derive a discrete model for the ND between two trees
H :=(Ξ, (N , A), P ) and G :=(Z, (N ′, A′), P ′). The transport mass between node i ∈ Nt and node j ∈ N ′

t at stage
t ∈ {1, . . . , T}, is noted πi,j or π(i, j). The probability measures for eq. (ND) can be given directly by πi,j at
the leaves i ∈ NT and j ∈ N ′

T . For earlier nodes m ∈ Nt and n ∈ N ′
t , it can be derived from the conditional
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Figure 3.1: Scenario tree notations.

probabilities using π(i, j|m,n) =
πi,j

πm,n
. The problem from eq. (ND) to compute the Nested Distance reformulated

for trees, thus reads as:

Definition 8 (Nested Distance for Trees). For ι ∈ [1,∞), the process distance of order ι, between H and G is the
ιth root of the optimal value of the following LP,

dlι(H,G)ι :=



min
π

∑
i∈NT ,j∈N ′

T

πi,jd
ι
i,j

s.t.
∑

{j:n∈A(j)} π(i, j|m,n) = P (i|m), (m ∈ A(i), n)∑
{i:m∈A(i)} π(i, j|m,n) = P ′(j|n), (n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1.

(NDT)

This linear programming problem (LP) can be rather large and challenging to compute, this is why Kovacevic
and Pichler [41] introduced an efficient recursive method. Then [54] developped an even faster algorithm based on
the Sinkhorn distance. In the litterature, this distance is used and conveniently computed with the recursive exact
LP resolution or the Sinkhorn alternative algorithm.
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3.1.4 The KP algorithm for scenario tree reduction

The scenario tree reduction mechanism resides in solving the problem eq. (NDT), between the original and smaller
trees. The latter has known filtration (same number of stages but considerably fewer number of nodes than the
original tree), initialized probabilities, and quantizer values.

Even though, the distance eq. (NDT) to measure the closeness between scenario trees is broadly adopted, no
effective method to reduce general scenario trees based directly on this distance has been proposed since Kovacevic
and Pichler [41] (2015), because this approach has been judged too computationally demanding. An exception
is [6], which focuses on the particular class of stage-wise independent scenario trees. To deal with the non-convex
nature of the problem, due to the optimization of both quantizers and probabilities, the method in [41] operates a
classical block coordinate optimization scheme. As illustrated in Figure 3.2, after a filtration is chosen, the first step
is the optimization of the probabilities P ′ for fixed quantizers and the second step the optimization of the quantizer
values ξ ∈ Ξ for fixed probability. The latter step is developed in [41], it is straightforward and analytically exact
in the euclidean case ι = 2. The probability optimization is demanding though, because it requires solving multiple
(potentially large-scale) LPs. In the remainder of this work we will only develop the probability optimization and
will only recall briefly the quantizer optimization in Algorithm 5.

Figure 3.2: KP algorithm: to approximate a tree, a smaller tree with a given filtration is improved in order to
minimize the nested distance with the original tree. The probabilities and the quantizers are alternatively optimized
until convergence.

The multistage problem of optimal probabilities can be stated as follows: given the stochastic process quantizers
(ζ ∈ Z) and filtration F ′ := (N ′, A′), which probability measure P ′ is optimal to approximate H :=(Ξ, (N , A), P )
regarding the nested distance? Inspecting formulation eq. (NDT), it turns out that P ′ can be computed by jointly
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optimizing with respect to πi,j and P ′(j|j−). This leads to the following large non-convex optimization problem:

min
π,P ′

∑
i∈NT ,j∈N ′

T

πi,jd
ι
i,j

s.t.
∑

j∈n+ π(i, j|m,n) = P (i|m), (m ∈ A(i), n)∑
i∈m+ π(i, j|m,n) = P ′(j|n), (n ∈ A(j),m)

πi,j ≥ 0 and
∑

i,j πi,j = 1

P ′(j|j−) ≥ 0.

(3.4)

This is a bilinear problem, hence difficult to handle: there is a large number of decision variables and bilinear
constraints (issued by the conditional probabilities in the second group of constraints, which involve the decision
variables composing π and P ′). To get around the mathematical difficulties of eq. (3.4), the authors of [41] propose
first to write the problem in a recursive way so that bilinear terms are moved to the objective function, and then
approximate the objective. Indeed, using the conditional probabilities πi,j = π(i, j|m,n)× πm,n, we can derive the
recursive formula: ∑

i∈NT ,j∈N ′
T

π(i, j)dιi,j =
∑

n∈N ′
T−1

∑
m∈NT−1

π(m,n)
∑

i∈m+,j∈n+

π(i, j|m,n)dιi,j (3.5a)

=
∑

ñ∈N ′
T−1

∑
m̃∈NT−1

[π(m̃, ñ)× π(m,n|m̃, ñ)]× dlι(m,n)ι (3.5b)

=
∑

ñ∈N ′
T−2

∑
m̃∈NT−2

π(m̃, ñ)
∑

i∈m̃+,j∈ñ+

π(m,n|m̃, ñ)dlι(m,n)ι (3.5c)

Note that for the leaves i and j of the trees, dlι(i, j)
ι = dι(ξi, ζj)

ι = dιi,j because the filtration in eq. (ND) are
transparent at the leaves so the simple dιι can be used. Thanks to this recursive formula, the problem can be split
into recursive smaller problems for m ∈ Nt and n ∈ N ′

t : the conditional probability π(., .|m,n) is a solution to

min
π(.,.|m,n)

∑
m∈Nt

π(m,n)
∑

i∈m+,j∈n+ π(i, j|m,n)dlι(i, j)
ι

s.t.
∑

j∈n+ π(i, j|m,n) = P (i|m), (i ∈ m+)∑
i∈m+ π(i, j|m,n) =

∑
i∈m̃+ π(i, j|m̃, n), (j ∈ n+ and m, m̃ ∈ Nt)

π(i, j|m,n) ≥ 0.

(3.6)

The complication in this subproblem is the bilinear term in the objective. To get this difficulty, [41] proposes to fix
π(m,n) with the values computed from the previous iteration (or initialized at first iteration) giving rise to a LP
approximation. The authors have empirically shown that after few iterations of their algorithm the values assigned
to π(m,n) converge (not necessarily to the optimal solution).
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Despite this approximation, the problem is still challenging due to its huge dimensions. Thus, the method’s
main limitation is its computational burden that becomes prohibitive for large-scale scenario trees, as exemplified
in Section 3.3. The reason is that the method requires solving potentially large-scale LPs as in (3.6) repeatedly. We
address the challenge by noticing that (3.6) is nothing but a Wassertein barycenter problem, for which specialized
and efficient algorithms exist.

3.2 Scenario tree reduction via Wasserstein Barycenters

In this section we show that subproblem (3.6) is a Wassertein barycenter problem.

Definition 9 (Discrete Wasserstein Distance). Let (Ω, d) be a metric space and P (Ω) the set of Borel probability
measures on Ω. Furthermore, let ξ and ζ be two random vectors having probability measures µ and ν in P (Ω), that
is, ξ ∼ µ and ζ ∼ ν. For ι ∈ [1,∞), and probability measures µ and ν in P (Ω). Their ι-Wasserstein distance Wι

is :

Wι(µ, ν) :=

(
min

π∈U(µ,ν)

∑
Ω×Ω

d(ξ, ζ)ιdπ(ξ, ζ)

)1/ι

, (WD)

where U(µ, ν) is the set of all probability measures on Ω × Ω having marginals µ and ν. We denote by W ι
ι (µ, ν),

Wι to the power ι , i.e. W ι
ι (µ, ν) := (Wι(µ, ν))

ι.

With, for τ ≥ 0 a given scalar, ∆n(τ) :=
{
u ∈ Rn

+ :
∑n

i=1 ui = τ
}

is the set of non negative vectors in Rn

adding up to τ . If τ = 1, then ∆n(τ), denoted simply by ∆n, is the n+ 1 simplex.

Definition 10 (Wasserstein Barycenter). Given M measures {ν(1), . . . , ν(M)} in P (Ω) (see eq. (WD) and α ∈ ∆M ,
an ι-Wasserstein barycenter with weights α is a solution to the following optimization problem

min
µ∈P (Ω)

M∑
m=1

αmW ι
ι (µ, ν

(m)) . (3.7)

Now, to show that (3.6) fits into the structure of (3.7), let α
(n)
mi := π(n,mi) for i = 1, . . . ,M , M = |Nt|, and

P (|n) an auxiliary vector of probabilities allowing to reformulate and couple the last group of constraints in (3.6).
Given t ∈ {1, . . . , T} and n ∈ N ′

t , problem (3.6) reads as:

min
π(.,.|m,n),P ′(|n)

α
(n)
1

∑
i∈m1+,j∈n+

π(i, j|m1, n)dlι(i, j)
ι + · · ·+ α

(n)
M

∑
i∈mM+,j∈n+

π(i, j|mM , n)dlι(i, j)
ι

s.t.
∑

j∈n+ π(i, j|m1, n) = P (i|m1), (i ∈ m1+)

. . .
...∑

j∈n+ π(i, j|mM , n) = P (i|mM ), (i ∈ mM+)∑
i∈m1+

π(i, j|m1, n) = P ′(j|n), (j ∈ n+)
. . .

...∑
i∈mM+ π(i, j|mM , n) = P ′(j|n), (j ∈ n+)∑

j∈n+ P ′(j|n) = 1, π(i, j|m1, n) ≥ 0 · · · π(i, j|mM , n) ≥ 0,

(3.8)
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which is equivalent to

min
P ′(|n)≥0

∑
m∈Nt

α(n)
m W ι

ι (P
′(|n), P (|m)) s.t.

∑
j∈n+

P ′(j|n) = 1,

i.e., a Wasserstein Barycenter problem. This interpretation of (3.6) is crucial for rendering the scenario reduction
algorithm of [41] practical for huge-scale settings. The reason is that the above LP (equivalent to (3.6)) can be
efficiently handled by state-of-the-art methods such as the Iterative Bregman Projection method [9] or the Method
of Averaged Marginals [46]. While the former is an inexact method, the latter can indeed asymptotically compute
an exact barycenter, i.e., it can solve the large-scale LP (3.6) issued by the Nested Distance.

To further illustrate our interpretation of problem (3.6) as a Wassertein Barycenter problem, consider Fig-
ure 3.3. The boxed subtree of the approximated (smaller) tree forms a probability measure with support (n7, n8)
and probabilities (P (n7|n3), P (n8|n3)) that form a barycenter of the (original tree’s) subtrees with initial nodes
m3,m4,m5,m6. Once the Wasserstein Barycenter (P (n7|n3), P (n8|n3)) is computed by solving (3.8), we pass to
the next (approximated tree’s) subtree, that is the one issued by node n4. The probabilities (P (n9|n4), P (n10|n4))

are then computed by solving another barycenter problem, but with a different weights α
(n4)
m (and costs) for

m ∈ {m3,m4,m5,m6} (see eq. (3.8)).

Figure 3.3: (left) Original Tree, (right) Approximated tree. The probabilities (P (n7|n3), P (n8|n3)) are computed
as the Wasserstein Barycenter of the set of (known) probabilities associated to the boxed subtrees on the left.

It is thus clear that several Wasserstein Barycenter problems must be solved at every iteration of the scenario
tree reduction algorithm from [41], The faster the computation of such barycenters, the faster the scenario tree
reduction procedure.
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3.2.1 Wasserstein barycenters techniques for scenario reduction

Problem from eq. (3.8) is an LP and could, in principle, be solved by LP solvers such as Gurobi, Cplex, scipy, HiGHs,
and others. However, in real life applications of scenario tree reduction, problem from eq. (3.8) (equivalently problem
from eq. (3.6)) has huge dimensions and intractable by LP solvers, hindering thus the whole scenario tree reduction
process. Many methods can be employed to tackle eq. (3.8) [9,19–21,30,50,71,72]. In the remaining of the paper, we
will use two different WB algorithms, namely MAM presented in details in Chapter 2 and the Iterative Bregmann
Projection algorithm (IBP) [9] associated with the Sinkhorn algorithm [40, 64]. Let us now describe the latter
method.

3.2.1.1 Computation of Transport Plans via regularized techniques

The following paragraph explains how leveraging efficient regularized method enables to compute the transport
plans that the scenario tree reduction approach needs. First IBP is utilized to compute the barycenter of the
subtrees (see fig. 3.3), then the Sinkhorn’s algorithm is used to compute the transport plans between the computed
barycenter and each subtree. Note that, the Sinkhorn algorithm and the Iterative Bregmann Projection (IBP)
both rely on a regularization of the optimization problems presented in eqs. (3.8) and (WD). Next, we use matrix
notation to make the presentation lighter. Thus, (WD) reads as:

OT(p, q) := min
π∈U(p,q)

⟨D,π⟩. (3.9)

Recall that the ιth root of OT(p,q) is Wι(µ, ν) and p ∈ ∆R, and q ∈ ∆S are the masses of µ and ν. Cost D is
composed by the distance values (drs), and π is the transport matrix between the two probability densities. The
regularization leveraged by the following algorithms is the Kullback-Leibler divergence between π,Q ∈ RR×S and
Qr,s > 0 for all (r, s), defined as:

KL(π|Q) :=
∑
r,s

πr,s(log(
πr,s

Qr,s
)− 1) (3.10)

with the convention 0 log(0) = 0. Function KL is a Bregmann divergence, it is strongly convex, and assures that
KL(π|Q) ≥ 0 and KL(π|Q) = 0 if and only if π = Q. This function is employed to regularize the LP (3.9), leading
to the following nonlinear optimization problem:

OTϵ(p, q) := min
π∈U(p,q)

⟨D,π⟩+ ϵKL(π|p⊗ q), (3.11)

with p ⊗ q = (prqs)r,s and ϵ > 0 a given parameter. Since problem (3.11) is ϵ-strongly convex, it has a unique
optimal solution.

The Iterative Bregman Projections - IBP. Given input histogram q(m) ∈ ∆
(m)
S for m = 1, . . . ,M , a Wasser-

stein Barycenter with weights α ∈ ∆M is a solution of

min
p∈∆R

M∑
m=1

αmOT(p, q(m)) (3.12)

Then, applying the entropic regularization to (3.11) with ϵ > 0, one can approximate a barycenter by the solution
to the following problem

min
p∈∆R

M∑
m=1

αmOTϵ(p, q(m)). (3.13)
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This is a smooth strongly convex minimization problem, which can be tackled using gradient descent [19]. Another
more interesting way is to use the work of [9] and treat eq. (3.13) with an iterative method just like the Sinkhorn
algorithm. 1 The algorithm is detailed in Algorithm 3.

Algorithm 3 does not return the transport plans between the computed barycenter p and the histograms
q(m),m = 1, . . . ,M . But the KP algorithm exploits the transport plans only (see eq. (3.6)). Therefore it is
necessary to first compute the barycenter p using the IBP algorithm and then find one by one the transport plans
between p and each subtrees using the Sinkhorn’s algorithm.

Entropic Regularization for discrete measures Introducing, to problem eq. (3.11), dual variables f ∈ RR

and g ∈ RS for each marginal constraints, the Lagrangian of (3.11) is given by

L(π, f, g) = ⟨D,π⟩+ ϵKL(π|p⊗ q) + ⟨f, p− π1R⟩+ ⟨g, q − πT1S⟩ (3.17)

The derivative of L with respect to πr,s gives

∂L

∂πr,s
= Dr,s + ϵ log(

πr,s

prqs
)− fr − gs = 0, (3.18)

Thus
πr,s = prqse

fr+gs−Dr,s
ϵ := urKr,svs, (3.19)

with u := (pre
fr/ϵ)r, K := (e−Dr,s/ϵ)r,s and v := (qse

gs/ϵ)s.
The latter equation can be rewritten in matrix form as π = diag(u)Kdiag(v). Note that additionally the marginal

1Another more interesting way is to remark that if we define the penalization E(π) := −
∑
r,s

πr,s(log(πr,s) − 1) instead of the

Kullback-Leibler divergence, then:

OTϵ(p, q) := ⟨D,π⟩+ ϵE(π) (3.14a)

= ϵ
∑
r,s

(
Dr,s

ϵ
πr,s + πr,s log(πr,s)− πr,s) (3.14b)

= KL(π|K) (3.14c)

Then by noticing that p = π1R, eq. (3.12) can be rewritten:

min
π(m) ∈ U(p, q(m)),

m = 1, . . . ,M

M∑
m=1

αmKL(π(m)|K(m)) (3.15)

Then, following [9], the optimal coupling π(m),m = 1, . . . ,M can be derived after iterative KL projections onto the right and left
constraints, embodied by the sets U(p, q(m)),m = 1, . . . ,M , following the same pattern as the entropic regularization of the Sinkhorn’s
method.

π = diag(u)Kdiag(v) (3.16a)

v(m),k+1 =
q(m)

(K(m))Tu(m),k
and u(m),k+1 =

pk+1

K(m)v(m),k+1
(3.16b)

Where pk+1 is the current estimate of the barycenter (pk+1 =
∏M

m=1(K
(m)v(m),k+1)αm ). This result comes from the derivation of

the Lagrangian and the proof can be found in [9]. This algorithm can be computed in parallel and the transport plan can be directly
extracted and used in the scenario tree reduction algorithm.
In the following of this work, only Algorithm 3 and the following remarks are used and presented, but in futur research this method
will be used instead.
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Algorithm 3 IBP algorithm

▷ Step 0: input
Given ϵ > 0, for all m ∈ {1, . . . ,M}, compute the distance matrices D(m) and initialize u(m),0 with an arbitrary
positive vector, for example 1S
Define K = e−D/ϵ

▷ Step 1: Iterate
while not converged do

for m=1,. . . ,M do

v(m),k+1 = q(m)

(K(m))Tu(m),k

end for
pk+1 =

∏M
m=1(K

(m)v(m),k+1)αm

for m=1,. . . ,M do

u(m),k+1 = pk+1

K(m)v(m),k+1

end for
end while

return p := pk+1

constraints give: diag(u)Kdiag(v)1R = p and diag(v)KTdiag(u)1S = q. A standard way to solve these equations
is to use an iterative method: first modify u to satisfy the left constraints then modify v. These two updates define
the Sinkhorn algorithm:

Algorithm 4 Sinkhorn’s algorithm

▷ Step 0: input
Given ϵ > 0, initialize v(0) with an arbitrary positive vector, for example 1S
Define K = e−D/ϵ

▷ Step 1: Iterate
while not converged do

u(k+1) = p
Kv(k)

v(k+1) = q
KTu(k+1)

end while

return π = diag(u)Kdiag(v)

Observe that all the algorithm’s steps consist of matrix-vector multiplication, and is thus simple to execute.
The algorithm’s drawback is its accuracy, which strongly depends on ϵ > 0. The smaller ϵ the closer the solution of
(3.11) to an exact solution of (3.9). However, ϵ is bounded because for too small ϵ the values of K diverge and the
computation hurdle with double-precision overflow error.

3.2.2 Algorithm

We now rely on the previous subsections about Wasserstein barycenters to provide the following improved variant
of the scenario tree reduction algorithm of [41]. In Algorithm 5, given a multistage scenario tree represented by
P = (Ξ,F , P ), with Ξ the support, F a filtration, and P a probability measure, the algorithm constructs a smaller
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scenario tree P′ = (Ξ′,F ′, P ′) by updating the support Ξ′ (set of reduced scenarios) and probability P ′ iteratively.
The filtration F ′ is not a variable but a data given to the algorithm. In other words, the number of scenarios and
the structure of the reduced tree is an input data, and the algorithm seeks for Ξ′ and P ′ that minimizes the nested
distance between P and P′.

Algorithm 5 Scenario tree reduction via nested distance and Wasserstein barycenters

▷ Step 0: input
1: Let the original T -stage scenario tree P = (Ξ,F , P ) be given together with an (initial) smaller T -stage tree

P
′0 = (Ξ

′0,F ′, P
′0). Compute the transport probabilities π0(i, j) between scenarios ξi ∈ Ξ and ξ

′j ∈ Ξ
′0

2: Set k ← 0 and choose a tolerance δ > 0

3: for k = 1, 2, . . . do
▷ Step 1: improve the scenario values (quantizers)

4: Set ξ
′k+1(nt) =

∑
m∈Nt

πk(m,nt)∑
i∈Nt

πk(i,nt)
ξt(m) for all t = 1, . . . , T and nodes nt of the smaller tree

5: Let Ξ
′k+1 be the set of such new scenarios

▷ Step 2: improve the probabilities
6: Set dlk+1(i, j)← ∥ξi − ξ

′j∥2 for all ξi ∈ Ξ and ξ
′j ∈ Ξ

′k+1

7: for t = T − 1, . . . , 0 do ▷ Recursivity

8: Set α
(n)
m ← πk(m,n), m ∈ Nt, n ∈ N ′

t

9: for all n ∈ N ′
t do ▷ Wasserstein barycenters

10: Use IBP followed by Sinkhorn, or MAM to compute πk+1(·, ·|·, n) solving (3.8)
11: end for
12: Set dlk+1(m,n)←

∑
i∈m+,j∈n+ πk+1(i, j|m,n)dlk+1(i, j), m ∈ Nt, n ∈ N ′

t

13: end for
▷ Unconditional transport plan matrix

14: Set πk+1(0, 0)← 1
15: for t=1,. . . ,T do

16: Compute πk+1(m,n) = πk+1(i,j|m,n)
πk+1(i,j)

, m ∈ Nt, n ∈ N ′
t for any i ∈ m−, j ∈ n−

17: end for

▷ Step 3: Stopping test
18: if dlk(0, 0)− dlk+1(0, 0) ≤ δ then
19: Define P ′

j =
∑

i∈NT
πk+1(i, j) for all j ∈ N ′

T and set d(P,P′)← dlk+1(0, 0)

20: Stop and return with the reduced tree P
′
= (Ξ

′
,F ′, P

′
) and nested distance d(P,P′)

21: end if
22: end for

3.2.2.1 Initialization

Observe that P
′0 is useful to determine the initial transport plan π0: the algorithm can use the Sinkhorn algorithm

or MAM for this task.
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3.2.2.2 Hyperparameters

IBP and Sinkhorn’s algorithms relies on the use of a parameter ϵ > 0 chosen by the user [9, 20]. Such parameter
has an impact on the result’s accuracy. The MAM algorithm also requires setting a parameter, but it only impacts
the convergence speed and can be determined with a sensitivity analysis [46].

3.2.2.3 Stopping criteria

The given stopping criteria test for is a heuristic: the algorithm terminates when the progress concerning the nested
distance between the two trees is below a certain level of tolerance δ.

3.2.2.4 Storage complexity

The distance matrix dl and the transport matrix π whose size are equal to the number of nodes of the initial tree
times the number of nodes in the approximate tree can be quite large to store but using adequate libraries, such as
numpy in python, allow for fast computation of the linear operations that are used in the method.

3.2.2.5 Convergence

The algorithm leads to an improvement in each iteration step and converges in finitely many steps [41] provided
δ > 0. It should be kept in mind that the above algorithm is nothing but a heuristic, as it is a block-coordinate
algorithm seeking to minimize the nested distance by alternating minimization over scenarios and then with respect
to probabilities. As already discussed, the latter is bilinear optimization problem that is approximated by a recursion
of LPs.

3.3 Applications

This section illustrates the performance of algorithm 5 and its behaviour by employing different solvers to compute
Wasserstein barycenters. If a standard LP solver is employed, then algorithm 5 boils down to the setting of [41].
We ensure that the considered solvers attain the same level of precision when tackling the Wasserstein barycenter
problems at Step 2 of Algorithm 5.

In what follows, we consider scenarios trees composed by T =4 to 8 stages and cpn =5 to 6 children per nodes,
offering numbers of scenarios and nodes spanning from hundreds to ten of thousands. In our preliminary tests, the
reduced tree is always a binary tree having the same number of stages than the original one.

Numerical experiments were conducted using 4 cores (Intel(R) Xeon(R) Gold 5120 CPU ) and Python 3.9.

Algorithm 5 is implemented in python using a MPI based parallelization when possible (only MAM can be run
in parallel). We consider the following variants of the algorithm, by changing the solver at Step 2:

• LP : Algorithm 5 employing the LP solver HiGHS for solving the Wasserstein Barycenter problem from
eq. (3.8);

• MAM : Algorithm 5 employing the Method of Averaged Marginals [46] to solve eq. (3.8) exactly using the
algorithm presented in ??;

• IBP : Algorithm 5 employing IBP Sinkhorn’s algorithm, inspired from the code of G. Peyré [49]. (These
algorithms rely on the tune of hyperparameters that have been preset to guarantee their best efficiency and
convergence.)
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All variants use δ = 0.1 as a tolerance for the stopping test. It has been empirically verified that results do not
improve significantly if we decrease further this tolerance.

Figure 3.4: Evolution of the Nested Distance along the reduction iterations for different initial trees.

Figure 3.4 shows that the exact nested distance between the original tree and the approximate one iteratively
decreases, not matter the variant of algorithm 5. All variants are internalized with the same initial tree, obtained
randomly (probabilities and scenarios). Note that the initial ND is always at least halved after the reduction. This
emphasizes how important is the use of a reduction method. Within this scale, one can see that every variant
converges to approximately the same precision, although not necessarily to the same reduced scenario tree (because
different solvers compute different optimal transportation plans, impacting the construction of scenarios composing
the reduced tree).

Even though the ND decreases with all variants, such decreases seam faster when using LP or MAM . Also, the
IBP algorithm tends to reach a plateau where it cannot improve the approximate tree after few iterations. This is
due to the core of the IBP and Sinkhorn methods, which are inexact algorithms. MAM being an exact algorithm
for solving eq. (3.8), it naturally follows the lead of LP . The slight differences between the variants LP and MAM
can be explained by the fact that the general problem is non-convex, and different optimal transportation plans
computed by different solvers can lead to different optimization paths that result in different reduced scenario trees.
Therefore, depending on the employed solvers and the initialization, the approximated trees could be different
while still having close ND with the original tree. Note that for T = 5, cpn= 6 the variant MAM yields a better
approximation than the LP .

Table 3.1 shows that for small initial trees, up to 7776 scenarios, the LP variant is very effective: it provides
the lowest ND solution in the shortest time. But from 15625 scenarios and more, IBP is faster. As the number of
scenarios increases, the relative performances of MAM get better and, in our case with more than 46656 scenarios,
MAM is eventually two times faster than LP while reaching the same precision as depicted in Figure 3.4. As
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Figure 3.5: Evolution of the Nested Distance along the reduction iterations for different initial trees with a zoom.

shown in the last graph, with even more nodes and scenarios (78125 and 97656, respectively), MAM is the fastest
variant. Note that IBP is a very robust method: not only is the precision reached more than reasonable, according
to Figure 3.4, but the total time of execution is always in the ballpark of the fastest execution time of all algorithms.
Leveraging that MAM is embarrassingly parallelizable, we ran results using 4 processors. We witnessed that in this
configuration, the variant MAM is the most advantageous one when the initial tree has more than 10000 scenarios.
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LP IBP MAM MAM 4 processors
T=4, cpn=6 0.17 0.49 2.21 0.56
T=5, cpn=6 1.54 14.83 18.23 6.28
T=6, cpn=6 74.25 161.19 344.83 124.44
T=7, cpn=5 487.58 323.76 816.46 341.62
T=7, cpn=6 4905 2136 2541 1256
T=8, cpn=5 13797 4334 3458 1635

Table 3.1: Total time (in seconds) per method for the studied trees.
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Chapter 4

Concluding remarks and future work

This ongoing thesis concerns scenario tree reduction in multistage stochastic programming, a branch of mathemat-
ical optimization dedicated to decision-making under uncertainty along several time steps. Multistage stochastic
programming has many applications and is particularly valuable in the energy industry. Multistage stochastic
problems are recognized as challenging due to their astronomical dimensions, which are issued by the interplay of
decision and random vectors along time steps. Finding ways to reduce the problem’s dimensions while keeping ap-
proximately the same solution set and optimal value is essential in real-life applications of stochastic programming.
This is why this thesis focuses on methodologies for reducing multistage scenario trees.

Central to our contribution is the development of a computational framework that integrates cutting-edge
methods to enhance barycenter computation, thus facilitating the scenario tree reduction process. Recognizing
the significance of accurate barycenter computation, we devised a new method tailored to address the Wasserstein
Barycenter Problem. Our objective was to provide an exact solution capable of competing with existing methods
in terms of efficiency and effectiveness. This new methodology leverages the Douglas-Rachford Operator splitting
algorithm, enabling precise computation of barycenter probability densities through the calculation of transport
plan marginals, which we term the Method of Averaged Marginals (MAM). This technique represents a significant
advancement in the field, offering a more refined approach to scenario tree reduction. Furthermore, we have
extended the applicability of MAM to tackle unbalanced barycenter problems, thereby addressing a broader range
of applications. This extended version of MAM holds promise for enhancing the versatility and practicality of our
approach, opening avenues for further exploration and refinement in scenario tree reduction methodologies. The
manuscript detailing the MAM algorithm has been submitted to the SIAM Journal on Mathematics and Data
Sciences (SIMODS) 1. (We have received positive feedback by the journal’s Referees and Editor while finalizing this
report - they are advising us for further improvements on the manuscript). Additionally, a manuscript concerning
our innovative approach to scenario tree reduction will be submitted to a specialized journal in the coming weeks.

In summary, this ongoing thesis has so far introduced a novel methodology for computing Wasserstein barycen-
ters, identified that the large-scale subproblems in the scenario tree reduction algorithm of Kovacevic and Pichler [41]
are indeed Wasserstein barycenter problems, and proposed variants of the latter algorithm exploiting the particular
structure of such subproblems. Preliminary numerical experiments show that furnishing the scenario tree reduction
algorithm with specialized solvers for computing Wasserstein barycenters can significantly boost its performance,
making the algorithm effective even in situations considered impractical prior to this work.

1https://www.siam.org/publications/journals/siam-journal-on-mathematics-of-data-science-simods
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4.1 Participation in scientific events and valorization of our research

The MAM algorithm has been presented in several scientific events:

• Presentation during the PGMO days, the annual conference of the Optimization, OR, and Data Science pro-
gram of the FMJH (Fondation Mathématiques Jacques Hadamard). (https://smf.emath.fr/evenements-smf/
pgmo-days-2023)

• Presentation of a poster at the Consortium in Applied Mathematics (CIROQUO). (https://ciroquo.ec-lyon.
fr/evenements.html)

• Presentation of a poster during the DATA IA days of CentraleSupelec. (https://www.dataia.eu/)

Notable conferences and events I attended this year include:

• NeurIPS Paris (https://scai.sorbonne-universite.fr/public/events/view/4ad2190f2c212abfd60f/8)

Key courses I participated in:

• MVA/MASH Course on Computational Optimal Transport by Gabriel Peyré (https://www.master-mva.
com/cours/computational-optimal-transport/)

• PSL week on Stochastic Optimization by Welington de Oliveira (https://www.oliveira.mat.br/teaching)

Courses I instructed:

• Mines Paris, Mathematics for Data Science (L3), Centre de Morphologie Mathématique (https://www.cmm.
minesparis.psl.eu/), with Bruno Figliuzzi and Chloé-Agathe Azencott.

4.2 Future research directions

Several topics will be considered throughout the remainder of this PhD work:

• We have just received the Referee Reports on the manuscript submitted to SIMODS. Consequently, we will
carefully consider all their remarks and corrections before resubmitting it within the next month. This includes
comparisons with additional methods for computing Wasserstein barycenters.

• Such additional methods might be considered, if competitive with MAM, in the second manuscript we are
currently writing about scenarios tree reduction.

• Further improvements on the combination of Wasserstein barycenters and scenario tree reduction are conceiv-
able. We plan to experiment warm-starting of MAM through several node-dependent barycenter problems.

• We will delve into exploring a new approach to accelerate the algorithm for the unbalanced barycenter problem,
inspired by the Frank-Wolfe algorithm (FW) [4]. This method has been investigated within a Sinkhorn’s
approach [45]. However, exploring it within the unbalanced formulation we proposed, eq. (2.10) could yield
interesting insights. The idea involves linearizing the square euclidean distance used in eq. (2.10), making
minimization with the FW algorithm explicit. This approach could potentially bypass the most costly step
of the MAM method, which is the projection onto the simplex. The main focus will be on studying the
convergence tradeoff: recognizing that while each FW iteration is fast, the number of iterations needed for
convergence can be considerable.
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• We anticipate in proposing a more exact and efficient approach for the reduction scenario tree problem: We
would like to enhance the MAM method to address non-convex problems. We would consider a Clipped
Wasserstein Barycenter Problem, inspired by [22] (see Example 3). The main idea would be to force the WB
to be sparser. Alternatively, leveraging a Progressive Decoupling Algorithm could offer a viable solution.

• We want to propose a new concept of barycenters, which we plan to call Process Barycenter and will be
defined by employing the Nested/Process distance of G. Pflug [52]. While proposing such a new concept is a
simple task, investigating whether such an original barycenter offers new insights, mathematical properties,
or computational features for scenario tree reduction is still to be determined.

Key engagements I have planned include presenting additional findings on an enhanced iteration of the MAM
method at the prestigious international conference ISMP 2024 (International Symposium on Mathematical Pro-
gramming: https://ismp2024.gerad.ca/). Additionally, in April, I am going to visit the academic thesis advisor
at CMA (Sohia Antipolis) for one month, to conduct technical research on the topics introduced earlier.

Moving forward, my objective for the remainder of this PhD thesis will be to share results with the international
community by participating in renowned conferences such as ICML, NeurIPS, AISTATS, among others.

4.3 Career plan

This PhD experience has deepened my passion for science and research, which was already ignited during my
two-year experience as a data scientist post-graduation. It has become increasingly clear to me that my career
aspirations lie in research, ideally within the Research and Development department of a technology company. I
am particularly drawn to companies whose primary products are grounded in research, fostering an environment of
curiosity and intellectual challenge.
While I am open to exploring various industrial sectors, my interests are particularly piqued by energy and biomed-
ical research. Ideally, I would pursue a role focused on optimal transport research. However, I am also open to
opportunities in other sectors, especially at leading tech companies like Google, Facebook, Amazon, etc., known for
their high scientific standards and emphasis on state-of-the-art methods.
While I am intrigued by quantitative research in fields like finance, I am less inclined to pursue projects in this
sector. However, I remain open to learning more about quantifier research, as it aligns with my mathematical
preferences. Despite this interest, I am unlikely to actively seek out such projects.
I aspire to explore professional opportunities abroad. However, I am hesitant to pursue a Postdoc position due to
the demanding and precarious nature of the academic system. While I am deeply attracted to pure science, I am
not willing to sacrifice my personal life for it.

50

https://ismp2024.gerad.ca/


Bibliography

[1] Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. Siam Journal on Mathematical
Analysis, 43(2):904–924, 2011.

[2] Gilles Bareilles, Yassine Laguel, Dmitry Grishchenko, Franck Iutzeler, and Jérôme Malick. Randomized progres-
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[49] Gabriel Peyré. Bregmanot, 2014.
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