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▶ In applied probability, stochastic optimization, and data science, a crucial
aspect is the ability to compare, summarize, and reduce the dimensionality of
empirical (discrete) measures

▶ Since these tasks rely heavily on pairwise comparisons of measures, it is
essential to use an appropriate metric for accurate data analysis

▶ Different metrics define different barycenters of a set of measures:
a barycenter is a mean element that minimizes the (weighted) sum of all its
distances to the set of target measures

▶ When the chosen metric is the optimal transport one, and there is mass
equality between the measures, the underlying barycenter is denoted by
Wasserstein Barycenter (WB)
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Example extracted from [1]

30 artificial images

Barycenters using

(a) Euclidean distance

(b) Euclidean + re-centering

(c) Jeffrey centroid

(d) RKHS distance

(e) 2-Wasserstein distance:

Wasserstein barycenter

1M. Cuturi, A. Doucet. JMLR, 2014
2



The (Discrete) Wasserstein Distance
Let ξ, ζ : Ω → Rd be two random vectors having probability measures µ and ν:

ξ ∼ µ and ζ ∼ ν

We focus on discrete measures based on

finitely many R atoms supp(µ) := {ξ1, . . . , ξR}

finitely many S atoms supp(ν) := {ζ1, . . . , ζS},

i.e., the supports are finite and thus the measures are given by

µ =
R∑

r=1

prδξr and ν =
S∑

s=1

qsδζs

Quadratic Wasserstein distance - discrete setting

The 2-Wassestein distance between two discrete probability measures µ and ν is:

W2(µ, ν) :=

(
min

π∈U(µ,ν)

R∑
r=1

S∑
s=1

∥ξr − ζs∥2πrs

)1/2

with

U(µ, ν) :=

{
π ≥ 0

∣∣∣∣ ∑R
r=1 πrs = qs, s = 1, . . . , S∑S
s=1 πrs = pr, r = 1, . . . , R

}

3



Discrete Wasserstein Barycenter

▶ Let α ∈ RM
+ be a vector of weights:

∑M
m=1 αm = 1

Discrete Wassertein Barycenter - WB
A Wassertein barycenter of a set of M discrete probability measures νm ∈ P(Ω),
m = 1, . . . ,M , is a solution to the following optimization problem

min
µ∈P(Ω)

M∑
m=1

αmW 2
2 (µ, ν

m)

▶ A WB of a set of M discrete probability measures is a discrete measure itself,
supported on a subset of the finite set

supp(µ) :=

{
M∑

m=1

αmζms : ζms ∈ supp(νm), m = 1, . . . ,M

}

▶ This set has at most ΠM
m=1S

m points, with Sm = |supp(νm)|

▶ If we enumerate all R points ξ ∈ supp(µ), we get an LP formulation for the
discrete WB
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Discrete Wasserstein Barycenter

supp(µ) =

{
M∑

m=1

αmζms : ζms ∈ supp(νm), m = 1, . . . ,M

}
Let R = |supp(µ)|, ξ ∈ supp(µ) and Sm = |supp(νm)|

Discrete Wassertein Barycenter - WB
A Wasserstein barycenter of a set of M discrete probability measures νm,
m = 1, . . . ,M , is a solution to the LP

min
p,π≥0

M∑
m=1

αm

R∑
r=1

Sm∑
s=1

∥ξr − ζms ∥2πm
rs

s.t.
R∑

r=1

πm
rs = qms , s = 1, . . . , Sm, m = 1, . . . ,M

Sm∑
s=1

πm
rs = pr, r = 1, . . . , R, m = 1, . . . ,M

▶ This LP scales exponentially in the number M of measures [2]

▶ If M = 100 S(m) = 3600, m = 1, . . . ,M (corresponding to figures with 60× 60
pixels), the above LP has 1.2574 · 1010 variables and 3.5288 · 106 constraints.

2S. Borgwardt. Operational Research (2022)
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A vast body of the literature deals with inexact WBs

Inexact approaches

▶ Mostly based on reformulations via an entropic regularization: several papers
by M. Cuturi, G. Peyré, G. Carlier and others

▶ Block-coordinate approach: fix the support and optimize the probability, then
fix the probability and optimize the support [3, 4, 5]

▶ Other approaches [6,7,8]

Exact methods

▶ Methods for computing exact WBs are based on linear programming
techniques and thus applicable to applications of moderate sizes [9,10]

3M. Cuturi, A. Doucet. JMLR, 2014
4J. Ye, J. Li. IEEE ICP (214)
5J. Ye et al. IEEE Transactions on Signal Processing (2017)
6G. Puccetti, L. Ruschendorf, S. Vanduffe. JMVA (2020)
7S. Borgwardt. Operational Research (2022)
8J. von Lindheim. COAP (2023)
9S. Borgwardt, S. Patterson (2020). INFORM J. Optimization

10J. Altschuler, E. Adsera. JMLR (2021)
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Our Contribution: The Method of Averaged Marginals
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Our contribution

We provide an easy-to-implement, memory efficient and parallelizable algorithm
based on the Douglas-Rachford splitting scheme to compute a solution to LPs of
the form 

min
p,π≥0

M∑
m=1

R∑
r=1

Sm∑
s=1

dmrsπ
m
rs

s.t.
R∑

r=1

πm
rs = qms , s = 1, . . . , Sm, m = 1, . . . ,M

Sm∑
s=1

πm
rs = pr, r = 1, . . . , R, m = 1, . . . ,M

with given dm ∈ RR×Sm
(e.g. dmrs := αm∥ξr − ζms ∥2)

Observe that we can drop the vector p (wlog)
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min
π≥0

M∑
m=1

R∑
r=1

Sm∑
s=1

d
m
rsπ

m
rs

s.t.
R∑

r=1

π
1
rs = q

1
s , s = 1, . . . , S

1

.

.

.
R∑

r=1

π
M
rs = q

M
s , s = 1, . . . , S

M

S1∑
s=1

π
1
rs = · · · =

SM∑
s=1

π
M
rs , r = 1, . . . , R

≡



min
π

M∑
m=1

⟨dm, π
m⟩

s.t. π
1 ∈ Π

m

.

.

.

π
M ∈ Π

M

π ∈ B

This LP can be solved by the Douglas-Rachford splitting (DR) method

Given an initial point θ0 = (θ1,0, . . . , θM,0) and prox-parameter ρ > 0:

DR algorithm


πk+1 = ProjB(θk)

π̂k+1 = arg min
πm∈Πm

m=1,...,M

M∑
m=1

⟨dm, π
m⟩ +

ρ

2
∥π − (2πk+1 − θk)∥2

θk+1 = θk + π̂k+1 − πk+1

{πk} converges to a solution to the above LP [11]

11H.H. Bauschke, P.L. Combettes. Chapter 25. (2017)
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Given θ ∈ RR×
∑M

m=1 Sm
, let am :=

1
Sm∑M

j=1
1

S(j)

be weights, pm :=
∑Sm

s=1 θ
m
rs the

mth marginal, p :=
∑M

m=1 ampm the average of marginals

Proposition (First DR’s step)

The projection π = ProjB(θ) has the explicit form:

πm
rs = θmrs +

(pr − pmr )

Sm
, s = 1, . . . , Sm, r = 1, . . . , R, m = 1, . . . ,M

Proposition (Second DR’s step)

The proximal mapping π̂ = argmin πm∈Πm

m=1,...,M

∑M
m=1⟨dm, πm⟩+ ρ

2
∥π − y∥2 can be

computed exactly, in parallel along the columns of each transport plan ym, as
follows: for all m ∈ {1, . . . ,M}, π̂m

1s
...

π̂m
Rs)

 = Proj∆R(qms )


y1s − 1

ρ
dm1s

...
yRs − 1

ρ
dmRs

 , s = 1, . . . , Sm

Here, ∆R(τ) =
{
x ∈ RR

+ :
∑R

r=1 xr = τ
}
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The Method of Averaged Marginals (MAM)

MAM is a specialization of the DR algorithm applied to the WB problem

Easy-to-implement and memory efficient algorithm to compute WBs

MAM algorithm
1: Input: initial plan π = (π1, . . . , πm) and parameter ρ > 0

2: Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

3: while not converged do

4: p←
∑M

m=1 ampm ▷ Average the marginals

5: for m = 1, . . . ,M do
6: for s = 1, . . . , Sm do

7: πm
:s ← Proj∆(qms )

(
πm
:s + 2 p−pm

Sm − 1
ρ
dm:s

)
− p−pm

Sm

8: end for
9: pm ←

∑Sm

s=1 πm
rs ▷ Update the mth marginal

10: end for

11: end while

This algorithm is parallelizable and can run in a randomized manner...
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Unbalanced Wasserstein barycenters

Linear subspace of balanced plans:

B =

π :
S1∑
s=1

π1
rs = · · · =

SM∑
s=1

πM
rs , r = 1, . . . , R


νm, m = 1, . . . ,M , have equal masses

Balanced WB



min
π∈B

M∑
m=1

⟨dm, πm⟩

s.t. π1 ∈ Πm

...

πM ∈ ΠM

νm, m = 1, . . . ,M , have different masses

Unbalanced WB (γ > 0)



min
π

M∑
m=1

⟨dm, πm⟩+ γ distB(π)

s.t. π1 ∈ Πm

...

πM ∈ ΠM

MAM can be easily adapted to deal with both balanced and unbalanced WBs

Evaluating the proximal operator of distB(π) amounts to projecting onto B

12



Convergence Analysis

Theorem (MAM’s convergence analysis)

▶ (Deterministic.) MAM asymptotically computes a balanced (unbalanced)
Wasserstein barycenter should the measures be balanced (unbalanced)

▶ (Randomized.) MAM computes almost surely a balanced (unbalanced)
Wasserstein barycenter should the measures be balanced (unbalanced)

13



Applications
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Numerical experiments: fixed support R = 1600
We benchmark MAM, randomized MAM, and IBP (Iterative Bregman Projection of [12]) on
the MNIST database with M = 100 images of 40 × 40 pixels. LP’s dimension: 256 001 600
variables and 320 000 constraints

12[J.-D. Benamou et al. SIAM Journal on Scientific Computing. (2015)]
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Quantitative comparisons - Fixed support R = 1600

Evolution with respect to time of the difference between the Wasserstein barycenter distance of

an approximation, W̄2
2 (pk), and the Wasserstein barycentric distance of the exact solution

W̄2
2 (pexact) given by the LP. The time step between two points is 30 seconds
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Exact free-support resolution

The dataset we use is the one from [13]: M = 10 images of 60× 60 pixels

LP’s dimension: 1.2574 · 1010 variables and 3.5288 · 106 constraints
We compare with the dedicated solver of Altschuler and Boix-Adsera, available at [14]

Evolution of the approximated MAM barycenter with time in regards with the exact
barycenter of the Altschuler and Bois-Adsera algorithm computed in 3.5 hours [15]

MAM can solve larger problems than the method Altschuler and Boix-Adsera

13J. M. Altschuler and E. Boix-Adsera. JMLR (2021)
14https://github.com/eboix/high_precision_barycenters
15S. Borgwardt, S. Patterson (2020). INFORM J. Optimization
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Unbalanced WB


min
π

M∑
m=1

⟨dm, π
m⟩ + γdistB(π)

s.t. π
1 ∈ Π

m
, . . . , π

M ∈ Π
M
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Sparse (Nonconvex) Wasserstein Barycenter
Problem
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Constrained Wasserstein barycenters

Suppose the probability vector p is constrained to a closed convex set X ⊂ RR:

min
p,π≥0

M∑
m=1

⟨dm, π
m⟩

s.t.
R∑

r=1

π
m
rs = q

m
s , s = 1, . . . , S

m
, m = 1, . . . ,M

Sm∑
s=1

π
m
rs = pr, r = 1, . . . , R, m = 1, . . . ,M

p ∈ X

▶ If X is convex, MAM can be easily extended to compute constrained WB

▶ If X is nonconvex, MAM is no longer convergent

Our proposal: Difference-of-Convex (DC) model



min
p,π≥0

M∑
m=1

⟨dm, π
m⟩ + γ dist

2
X (p)

s.t.
R∑

r=1

π
m
rs = q

m
s , s = 1, . . . , S

m
, m = 1, . . . ,M

Sm∑
s=1

π
m
rs = pr, r = 1, . . . , R, m = 1, . . . ,M
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Sparse Wasserstein barycenters

Let X := {p ∈ RR : ∥p∥0 ≤ n}


min
p≥0,π∈B

M∑
m=1

⟨dm, π
m⟩ + γ dist

2
X (p)

s.t. π1 ∈ Π1, . . . , πM ∈ ΠM

Barycenter of 10 images 28× 28

Joint work with Gregorio M. Sempere, Mines Paris PSL
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Take-away messages

▶ New easy-to-implement and memory efficient algorithm for computing WBs,
which is parallelizable and can run in a randomized manner if necessary

▶ It can be applied to both balanced WB and unbalanced WB problems upon
setting a single parameter

▶ It can be applied to the free or fixed-support settings

▶ It can handle convex constraints on the barycenter mass p

▶ For nonconvex constraints, an extension of MAM to the DC setting is under
investigation
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�� ��Thank you!

D. Mimouni, P. Malisani, J. Zhu, W. de Oliveira. Computing Wasserstein
barycenter via operator splitting: the method of averaged marginals.
To appear in SIAM Mathematics of Data Science, 2024

▶ Preprint available at
https://arxiv.org/pdf/2309.05315.pdf

▶ Python code is freely available at
https://ifpen-gitlab.appcollaboratif.fr/

detocs/mam_wb

Contact:

B daniel.mimouni@ifpen.fr

Ï https://dan-mim.github.io

https://arxiv.org/pdf/2309.05315.pdf
https://ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb
https://ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb
 daniel.mimouni@ifpen.fr
https://dan-mim.github.io


Annexes



Special setting: grid-structured data

▶ All measures share the same finite support: suppose that all measures ν(m)

are supported on a d-dimensional regular grid of integer step sizes in each
direction, each coordinate going from 1 to K: S(m) = S = Kd, and
supp(ν(m)) := {ζ1, . . . , ζS}, m = 1, . . . ,M

▶ The measures are evenly weighted αm = 1
M

, m = 1, . . . ,M

▶ Then supp(µ) has at most

R ≤ ((K − 1)M + 1)d

points, as the finer grid only runs between the boundary points [16]

This significantly reduces the LP’s dimension

16S. Borgwardt, S. Patterson (2020). INFORM J. Optimization



2-Wasserstein distance setting

Example (LP’s dimensions)

Consider the case: M = 10, d = 2, K = 40 ⇒ S = 1600

data |supp(µ)| # variables # eq. constraints
R (MS + 1)R (S +R)M

general 1.0995 · 1032 1.7593 · 1036 1.0995 · 1033
grid-structured 152881 2.4462 · 109 1544810

▶ In contrast to the worst-case, exponentially sized possible support set, there
always exists a WB µ̄ with provably sparse support

|supp(µ̄)| ≤
M∑

m=1

S(m) −M + 1

▶ For the above example |supp(µ̄)| ≤ 15991

▶ This fact motivates heuristics for computing inexact WBs: fixed-support
approaches, which generally fix R to

∑M
m=1 S

(m) −M + 1 (or fewer) points



The Method of Averaged Marginals - MAM
Unbalanced Wasserstein barycenter

Algorithm
1: Input: initial plan π = (π1, . . . , πm) and parameters ρ, γ > 0

2: Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

3: while not converged do

4: p←
∑M

m=1 ampm ▷ Average the marginals

5: Set t← 1 if ρ

√∑M
m=1

∥p− pm∥2
Sm ≤ γ; else t← γ/

(
ρ

√∑M
m=1

∥p− pm∥2
Sm

)
6: for m = 1, . . . ,M do
7: for s = 1, . . . , Sm do

8: πm
:s ← Proj∆(qms )

(
πm
:s + 2t p−pm

Sm − 1
ρ
dm:s

)
− t p−pm

Sm

9: end for
10: pm ←

∑Sm

s=1 πm
rs ▷ Update the mth marginal

11: end for

12: end while

Set γ = ∞ to compute balanced WB (if the measures are balanced)
Otherwise, choose γ ∈ (0,∞) to compute unbalanced WB



The Method of Averaged Marginals - MAM
Constrained setting

Algorithm
1: Input: initial plan π = (π1, . . . , πm) and parameter ρ > 0

2: Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

3: while not converged do

4: p← ProjX

(∑M
m=1 ampm

)
▷ Average the marginals

5: for m = 1, . . . ,M do
6: for s = 1, . . . , Sm do

7: πm
:s ← Proj∆(qms )

(
πm
:s + 2 p−pm

Sm − 1
ρ
dm:s

)
− p−pm

Sm

8: end for
9: pm ←

∑Sm

s=1 πm
rs ▷ Update the mth marginal

10: end for

11: end while



The optimal value of the WB problem is 0.2666

After 1 hour of processing, MAM had a barycenter distance of 0.2702, which improved to

0.2667 after 3.5 hours, when the solver of Altschuler and Boix-Adsera halts
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