A splitting method for computing Wasserstein Barycenters

Daniel Mimouni^{1,2}, Paul Malisani², Jiamin Zhu², Welington de Oliveira¹

1 Centre de Mathématiques Appliquées - CMA, Mines Paris PSL

2 IFP Energies nouvelles

EUROPT 2024, Lund, Sweden June 2024

(日) (종) (종) (종) (종) (종)

Let ξ and ζ be two random vectors having probability measures μ and ν , that is,

 $\xi \sim \mu$ and $\zeta \sim \nu$

We focus on discrete measures based on

finitely many R atoms $supp(\mu) := \{\xi_1, \ldots, \xi_R\}$

finitely many S atoms $supp(\nu) := \{\zeta_1, \ldots, \zeta_S\},\$

i.e., the supports are finite and thus the measures are given by

$$\mu = \sum_{r=1}^{R} p_r \delta_{\xi_r}$$
 and $\nu = \sum_{s=1}^{S} q_s \delta_{\zeta_s}$

QUADRATIC WASSERSTEIN DISTANCE - DISCRETE SETTING

The 2-Wassestein distance between two discrete probability measures μ and ν is:

$$W_2(\mu,\nu) := \left(\min_{\pi \in U(\mu,\nu)} \sum_{r=1}^R \sum_{s=1}^S \|\xi_r - \zeta_s\|^2 \pi_{rs}\right)^{1/2}$$

with

$$U(\mu,\nu) := \left\{ \pi \ge 0 \left| \begin{array}{cc} \sum_{r=1}^{R} \pi_{rs} = q_s, & s = 1, \dots, S \\ \sum_{s=1}^{S} \pi_{rs} = p_r, & r = 1, \dots, R \end{array} \right. \right.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

1

• Let $\alpha \in \Re^M_+$ be a vector of weights: $\sum_{m=1}^M \alpha_m = 1$

DISCRETE WASSERTEIN BARYCENTER - WB

A Wassertein barycenter of a set of M discrete probability measures ν^m , $m = 1, \ldots, M$, is a solution to the following optimization problem

$$\min_{\mu \in P(\Omega)} \sum_{m=1}^{M} \alpha_m W_2^2(\mu, \nu^m)$$

▶ A WB of a set of *M* discrete probability measures is a discrete measure itself, supported on a subset of the of the finite set

$$\operatorname{supp}(\mu) := \left\{ \sum_{m=1}^M \alpha_m \zeta_s^m : \ \zeta_s^m \in \operatorname{supp}(\nu^m), \ m = 1, \dots, M \right\}$$

- ▶ This set has at most $\prod_{m=1}^{M} S^m$ points, with $S^m = |supp(\nu^m)|$
- ▶ If we enumerate all R points $\xi \in \text{supp}(\mu)$, we get an LP formulation for the discrete WB

・ロト ・ 日 ト ・ モ ト ・ モ ト

$$\operatorname{supp}(\mu) = \left\{ \sum_{m=1}^M \alpha_m \zeta_s^m : \, \zeta_s^m \in \operatorname{supp}(\nu^m), \; m = 1, \dots, M \right\}$$

Let $R = |\operatorname{supp}(\mu)|, \xi \in \operatorname{supp}(\mu)$ and $S^m = |\operatorname{supp}(\nu^m)|$

DISCRETE WASSERTEIN BARYCENTER - WB

A Wassertein barycenter of a set of M discrete probability measures ν^m , $m = 1, \ldots, M$, is a solution to the LP

$$\min_{\substack{p,\pi \ge 0 \\ s.t.}} \sum_{m=1}^{M} \alpha_m \sum_{r=1}^{R} \sum_{s=1}^{S^m} \|\xi_r - \zeta_s^m\|^2 \pi_{rs}^m$$
s.t.
$$\sum_{\substack{r=1 \\ S^m}}^{R} \pi_{rs}^m = q_s^m, \quad s = 1, \dots, S^m, \ m = 1, \dots, M$$

$$\sum_{s=1}^{S^m} \pi_{rs}^m = p_r, \quad r = 1, \dots, R, \ m = 1, \dots, M$$

• This LP scales exponentially in the number M of measures [1]

¹S. Borgwardt. Operational Research (2022)

INEXACT APPROACHES

- Mostly based on reformulations via an entropic regularization: several papers by M. Cuturi, G. Peyré, G. Carlier and others
- Block-coordinate approach: fix the support and optimize the probability, then fix the probability and optimize the support [², ³, ⁴]
- Other approaches [5, 6, 7]

EXACT METHODS

 Methods for computing exact WBs are based on linear programming techniques [⁸,⁹]

- ²M. Cuturi, A. Doucet. JMLR, 2014
- ³J. Ye, J. Li. IEEE ICP (214)
- ⁴J. Ye et al. IEEE Transactions on Signal Processing (2017)
- ⁵G. Puccetti, L. Ruschendorf, S. Vanduffe. JMVA (2020)
- ⁶S. Borgwardt. Operational Research (2022)
- ⁷J. von Lindheim. COAP (2023)
- ⁸S. Borgwardt, S. Patterson (2020). INFORM J. Optimization
- ⁹J. Altschuler, E. Adsera. JMLR (2021)

A □ > A □ > A □ > A □ > A

OUR CONTRIBUTION

EXACT APPROACH FOR COMPUTING WASSERSTEIN BARYCENTERS

We provide an embarrassingly parallelizable algorithm based on the Douglas-Rachford splitting scheme to compute a solution to LPs of the form

$$\begin{cases} \min_{p,\pi \ge 0} & \sum_{m=1}^{M} \sum_{r=1}^{R} \sum_{s=1}^{S^{m}} d_{rs}^{m} \pi_{rs}^{m} \\ \text{s.t.} & \sum_{\substack{r=1\\s^{m}}}^{R} \pi_{rs}^{m} = q_{s}^{m}, \quad s = 1, \dots, S^{m}, \ m = 1, \dots, M \\ & \sum_{s=1}^{S^{m}} \pi_{rs}^{m} = p_{r}, \quad r = 1, \dots, R, \ m = 1, \dots, M \end{cases}$$

with given $d^m \in \Re^{R \times S^m}$ (e.g. $d_{rs}^m := \alpha_m \|\xi_r - \zeta_s^m\|^2$)

Observe that we can drop the vector p (wlog)

(□) (@) (E) (E)

$$\begin{array}{ccc} \min_{\pi \geq 0} & \sum_{m=1}^{M} \sum_{r=1}^{R} \sum_{s=1}^{S^{m}} d_{rs}^{m} \pi_{rs}^{m} \\ \text{s.t.} & \sum_{r=1}^{R} \pi_{rs}^{1} = q_{s}^{1}, \quad s = 1, \dots, S^{1} \\ & \vdots \\ & \sum_{r=1}^{R} \pi_{rs}^{M} = q_{s}^{M}, \quad s = 1, \dots, S^{M} \\ & \sum_{s=1}^{R} \pi_{rs}^{1} = r^{1} = \sum_{s=1}^{S^{M}} \pi_{rs}^{M}, \quad r = 1, \dots, R \end{array} \end{array} \\ = \begin{cases} \min_{\pi} & \sum_{m=1}^{M} \langle d^{m}, \pi^{m} \rangle \\ & \text{s.t.} & \pi^{1} \in \Pi^{m} \\ & \vdots \\ & \pi^{M} \in \Pi^{M} \\ & \pi \in \mathcal{B} \end{cases}$$

This LP can be solved by the Douglas-Rachford splitting (DR) method Given an initial point $\theta^0 = (\theta^{1,0}, \ldots, \theta^{M,0})$ and prox-parameter $\rho > 0$:

DR ALGORITHM

$$\begin{cases} \pi^{k+1} &= \operatorname{Proj}_{\mathcal{B}}(\theta^{k}) \\ \hat{\pi}^{k+1} &= \arg \min_{\substack{\pi^{m} \in \Pi m \\ m=1, \dots, M}} \sum_{m=1}^{M} \langle d^{m}, \pi^{m} \rangle + \frac{\rho}{2} \|\pi - (2\pi^{k+1} - \theta^{k})\|^{2} \\ \theta^{k+1} &= \theta^{k} + \hat{\pi}^{k+1} - \pi^{k+1} \end{cases}$$

 $\{\pi^k\}$ converges to a solution to the above LP [¹⁰]

 10 H.H. Bauschke, P.L. Combettes. Chapter 25. (2017)

FIRST DR'S STEP

PROJECTING ONTO THE SUBSPACE OF BALANCED PLANS

Given
$$\theta \in \Re^{R \times \sum_{m=1}^{M} S^m}$$
, let
 $a_m := \frac{\frac{1}{S^m}}{\sum_{j=1}^{M} \frac{1}{S^{(j)}}}$ be weights
 $p^m := \sum_{s=1}^{S^m} \theta_{rs}^m$ the m^{th} marginal
 $p := \sum_{m=1}^{M} a_m p^m$ the average of marginals

PROPOSITION

The projection $\pi = \operatorname{Proj}_{\mathcal{B}}(\theta)$ has the explicit form:

$$\pi_{rs}^{m} = \theta_{rs}^{m} + \frac{(p_r - p_r^{m})}{S^{m}}, \quad s = 1, \dots, S^{m}, \ r = 1, \dots, R, \ m = 1, \dots, M$$

This projection can be computed in parallel

Second DR's step

EVALUATING THE PROXIMAL MAPPING OF TRANSPORTATION COSTS

PROPOSITION

The proximal mapping

$$\hat{\pi} = \arg\min_{\substack{\pi^m \in \Pi^m \\ m=1, \ldots, M}} \sum_{m=1}^M \langle d^m, \pi^m \rangle + \frac{\rho}{2} \|\pi - y\|^2$$

can be computed exactly, in parallel along the columns of each transport plan y^m , as follows: for all $m \in \{1, \ldots, M\}$,

$$\begin{pmatrix} \hat{\pi}_{1s}^m \\ \vdots \\ \hat{\pi}_{Rs}^m \end{pmatrix} = \operatorname{Proj}_{\Delta_R(q_s^m)} \begin{pmatrix} y_{1s} - \frac{1}{\rho} d_{1s}^m \\ \vdots \\ y_{Rs} - \frac{1}{\rho} d_{Rs}^m \end{pmatrix}, \quad s = 1, \dots, S^m$$

Here, $\Delta_R(\tau) = \left\{ x \in \Re^R_+ : \sum_{r=1}^R x_r = \tau \right\}$

Every projection onto $\Delta_R(q_s^m)$ can be carried out (in parallel) efficiently and exactly [¹¹]

A D F A B F A B F A B F

¹¹L. Condat. Math.Prog. (2016)

THE METHOD OF AVERAGED MARGINALS - MAM

Easy-to-implement and memory efficient algorithm to compute WBs

Algorithm

1: Input: initial plan
$$\pi = (\pi^1, \dots, \pi^m)$$
 and parameter $\rho > 0$
2: Define $a_m \leftarrow (\frac{1}{S^m})/(\sum_{j=1}^M \frac{1}{S^j})$ and set $p^m \leftarrow \sum_{s=1}^{S^m} \pi_{rs}^m, m = 1, \dots, M$
3: while not converged do
4: $p \leftarrow \sum_{m=1}^M a_m p^m \qquad \triangleright$ Average the marginals
5: for $m = 1, \dots, M$ do
6: for $s = 1, \dots, S^m$ do
7: $\pi_{rs}^m \leftarrow \operatorname{Proj}_{\Delta(q_s^m)} \left(\pi_{rs}^m + 2\frac{p-p^m}{S^m} - \frac{1}{\rho} d_{rs}^m \right) - \frac{p-p^m}{S^m}$
8: end for $p_r^m \leftarrow \sum_{s=1}^{S^m} \theta_{rs}^m \qquad \triangleright$ Update the m^{th} marginal
10: end for

11: end while

This algorithm is embarrassingly parallelizable and can run in a randomized manner...

3

THE METHOD OF AVERAGED MARGINALS - MAM **BANDOMIZED**

Algorithm (randomized)

1: Input: initial plan
$$\pi = (\pi^1, \ldots, \pi^m)$$
 and parameter $\rho > 0$

2: Define
$$a_m \leftarrow (\frac{1}{S^m})/(\sum_{j=1}^M \frac{1}{S^j})$$
 and set $p^m \leftarrow \sum_{s=1}^{S^m} \pi_{rs}^m, m = 1, \dots, M$

3: while not converged do

4:
$$p \leftarrow \sum_{m=1}^{M} a_m p^m$$
 \triangleright Average the marginals

5: Draw randomly
$$m \in \{1, 2, ..., M\}$$
 with probability $\alpha_m > 0$

6: for
$$s = 1, ..., S^m$$
 do
7: $\pi_{is}^m \leftarrow \operatorname{Proj}_{\Delta(q_s^m)} \left(\pi_{is}^m + 2 \frac{p - p^m}{S^m} - \frac{1}{\rho} d_{is}^m \right) - \frac{p - p^m}{S^m}$
8: end for
9: $p^m \leftarrow \sum_{i=1}^{S^m} \theta_{ii}^m$ \triangleright Update the m^{th} marginal

9:
$$p^m \leftarrow \sum_{s=1}^{S} \theta^m_{rs}$$

10: end while

э.

イロト イ理ト イヨト イヨト

CONSTRAINED WASSERSTEIN BARYCENTERS

Suppose the probability vector p is constrained to a closed convex set $X \subset \Re^R$:

$$\begin{cases} \min_{p,\pi \ge 0} & \sum_{m=1}^{M} \langle d^{m}, \pi^{m} \rangle \\ \text{s.t.} & \sum_{r=1}^{R} \pi_{rs}^{m} = q_{s}^{m}, \quad s = 1, \dots, S^{m}, \ m = 1, \dots, M \\ & \sum_{s=1}^{S^{m}} \pi_{rs}^{m} = p_{r}, \quad r = 1, \dots, R, \ m = 1, \dots, M \\ & p \in X \end{cases}$$

How MAM can be modified to compute constrained WBs?

The Method of Averaged Marginals - MAM

CONSTRAINED SETTING

Algorithm

1: Input: initial plan
$$\pi = (\pi^1, \dots, \pi^m)$$
 and parameter $\rho > 0$
2: Define $a_m \leftarrow (\frac{1}{S^m})/(\sum_{j=1}^M \frac{1}{S^j})$ and set $p^m \leftarrow \sum_{s=1}^{S^m} \pi_{rs}^m$, $m = 1, \dots, M$
3: while not converged do
4: $p \leftarrow \operatorname{Proj}_X \left(\sum_{m=1}^M a_m p^m \right) \qquad \triangleright$ Average the marginals
5: for $m = 1, \dots, M$ do
6: for $s = 1, \dots, S^m$ do
7: $\pi_{is}^m \leftarrow \operatorname{Proj}_{\Delta(q_s^m)} \left(\pi_{is}^m + 2 \frac{p - p^m}{S^m} - \frac{1}{\rho} d_{is}^m \right) - \frac{p - p^m}{S^m}$
8: end for
9: $p^m \leftarrow \sum_{s=1}^{S^m} \theta_{rs}^m \qquad \triangleright$ Update the m^{th} marginal
10: end for

11: end while

・ロト ・四ト ・ヨト ・ヨト

UNBALANCED WASSERSTEIN BARYCENTERS

Linear subspace of balanced plans:

$$\mathcal{B} = \left\{ \pi : \sum_{s=1}^{S^1} \pi_{rs}^1 = \dots = \sum_{s=1}^{S^M} \pi_{rs}^M, \quad r = 1, \dots, R \right\}$$

How MAM can be modified to compute unbalanced WBs?

・ロト ・四ト ・ヨト ・ヨト

The Method of Averaged Marginals - MAM

UNBALANCED WASSERSTEIN BARYCENTER

Algorithm

1: Input: initial plan $\pi = (\pi^1, \ldots, \pi^m)$ and parameters $\rho, \gamma > 0$

2: Define
$$a_m \leftarrow (\frac{1}{S^m})/(\sum_{j=1}^M \frac{1}{S^j})$$
 and set $p^m \leftarrow \sum_{s=1}^{S^m} \pi_{rs}^m, m = 1, \dots, M$

3: while not converged do

$$\begin{array}{lllllllllll} 4: \quad p \leftarrow \sum_{m=1}^{M} a_m p^m & \triangleright \text{ Average the marginals} \\ 5: \quad \text{Set } t \leftarrow 1 \text{ if } \rho \sqrt{\sum_{m=1}^{M} \frac{\|p - p^m\|^2}{S^m}} \leq \gamma; \text{ else } t \leftarrow \gamma / \left(\rho \sqrt{\sum_{m=1}^{M} \frac{\|p - p^m\|^2}{S^m}}\right) \\ 6: \quad \text{ for } m = 1, \ldots, S^m \text{ do} \\ 7: \quad \text{ for } s = 1, \ldots, S^m \text{ do} \\ 8: \quad \pi_{:s}^m \leftarrow \operatorname{Proj}_{\Delta(q_s^m)} \left(\pi_{:s}^m + 2t \frac{p - p^m}{S^m} - \frac{1}{\rho} d_{:s}^m\right) - t \frac{p - p^m}{S^m} \\ 9: \quad \text{ end for} \\ 10: \quad p^m \leftarrow \sum_{s=1}^{S^m} \theta_{rs}^m \qquad \qquad \triangleright \text{ Update the } m^{th} \text{ marginal} \\ 11: \quad \text{ end for} \end{array}$$

12: end while

Set $\gamma = \infty$ to compute balanced WB (if the measures are balanced) Otherwise, choose $\gamma \in (0, \infty)$ to compute unbalanced WB

・ロト ・聞ト ・ヨト ・ヨト

THEOREM (MAM'S CONVERGENCE ANALYSIS)

- (Deterministic.) MAM asymptotically computes a balanced (unbalanced) Wasserstein barycenter should the measures be balanced (unbalanced)
- (Randomized.) MAM computes almost surely a balanced (unbalanced) Wasserstein barycenter should the measures be balanced (unbalanced)

Numerical experiments: fixed support $R = 1\,600$

We benchmark MAM, randomized MAM, and IBP (Iterative Bregman Projection of $[1^2]$) on the MNIST database with M = 60 images of 40 × 40 pixels. LP's dimension: 153 601 600 variables and 192 000 constraints

¹²[J.-D. Benamou et al. SIAM Journal on Scientific Computing□(2015)] → < ≡ → < ≡ →

MAM VERSUS IBP

Wasserstein barycentric distance:

$$\bar{W}_{2}^{2}(\mu) := \sum_{m=1}^{M} \alpha_{m} W_{2}^{2}(\mu, \nu^{m})$$

Evolution with respect to time of the difference between the Wasserstein barycenter distance of an approximation, $\bar{W}_2^2(p^k)$, and the Wasserstein barycentric distance of the exact solution $\bar{W}_2^2(p_{exact})$ given by the LP. The time step between two points is 30 seconds

(日) (四) (日) (日) (日)

Numerical experiments: free support $R = 34\,9281$

The dataset we use is the one from $[^{13}]$: M = 10 images of 60×60 pixels LP's dimension: $1.2574 \cdot 10^{10}$ variables and $3.5288 \cdot 10^6$ constraints We compare with the dedicated solver of Altschuler and Boix-Adsera, available at $[^{14}]$

However, MAM can solve larger problems than the method Altschuler and Boix-Adsera

(日) (同) (日) (日)

¹³J. M. Altschuler and E. Boix-Adsera. JMLR (2021)

¹⁴https://github.com/eboix/high_precision_barycenters

The optimal value of the WB problem is 0.2666

After 1 hour of processing, MAM had a barycenter distance of 0.2702, which improved to 0.2667 after 3.5 hours, when the solver of Altschuler and Boix-Adsera halts

ъ

A D F A B F A B F A B F

UNBALANCED WB

ъ

イロト イヨト イヨト イヨト

TAKE-AWAY MESSAGES

- New algorithm for computing WBs which is parallelizable and can run in a randomized manner if necessary
- ▶ It can be applied to both balanced WB and unbalanced WB problems upon setting a single parameter
- \blacktriangleright Can handle additional constraints on the barycenter mass p
- It can be applied to the free or fixed-support settings
- Our Python code is freely available at https://ifpen-gitlab.appcollaboratif.fr/detocs/mamwb

Thank you!

D. Mimouni, P. Malisani, J. Zhu, W. de Oliveira. Computing Wasserstein barycenter via operator splitting: the method of averaged marginals, https://arxiv.org/pdf/2309.05315.pdf, 2023

CONTACT:

- 🖂 welington.oliveira@minesparis.psl.eu
- 🖮 www.oliveira.mat.br

・ロト ・四ト ・ヨト ・ヨト - ヨー