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Let ξ and ζ be two random vectors having probability measures µ and ν, that is,

ξ ∼ µ and ζ ∼ ν

We focus on discrete measures based on

finitely many R atoms supp(µ) := {ξ1, . . . , ξR}

finitely many S atoms supp(ν) := {ζ1, . . . , ζS},

i.e., the supports are finite and thus the measures are given by

µ =
R∑

r=1

prδξr and ν =
S∑

s=1

qsδζs

Quadratic Wasserstein distance - discrete setting

The 2-Wassestein distance between two discrete probability measures µ and ν is:

W2(µ, ν) :=

(
min

π∈U(µ,ν)

R∑
r=1

S∑
s=1

∥ξr − ζs∥2πrs

)1/2

with

U(µ, ν) :=

{
π ≥ 0

∣∣∣∣ ∑R
r=1 πrs = qs, s = 1, . . . , S∑S
s=1 πrs = pr, r = 1, . . . , R

}
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▶ Let α ∈ ℜM
+ be a vector of weights:

∑M
m=1 αm = 1

Discrete Wassertein Barycenter - WB
A Wassertein barycenter of a set of M discrete probability measures νm,
m = 1, . . . ,M , is a solution to the following optimization problem

min
µ∈P (Ω)

M∑
m=1

αmW 2
2 (µ, ν

m)

▶ A WB of a set of M discrete probability measures is a discrete measure itself,
supported on a subset of the of the finite set

supp(µ) :=

{
M∑

m=1

αmζms : ζms ∈ supp(νm), m = 1, . . . ,M

}

▶ This set has at most ΠM
m=1S

m points, with Sm = |supp(νm)|

▶ If we enumerate all R points ξ ∈ supp(µ), we get an LP formulation for the
discrete WB
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supp(µ) =

{
M∑

m=1

αmζms : ζms ∈ supp(νm), m = 1, . . . ,M

}
Let R = |supp(µ)|, ξ ∈ supp(µ) and Sm = |supp(νm)|

Discrete Wassertein Barycenter - WB
A Wassertein barycenter of a set of M discrete probability measures νm,
m = 1, . . . ,M , is a solution to the LP

min
p,π≥0

M∑
m=1

αm

R∑
r=1

Sm∑
s=1

∥ξr − ζms ∥2πm
rs

s.t.
R∑

r=1

πm
rs = qms , s = 1, . . . , Sm, m = 1, . . . ,M

Sm∑
s=1

πm
rs = pr, r = 1, . . . , R, m = 1, . . . ,M

▶ This LP scales exponentially in the number M of measures [1]

1S. Borgwardt. Operational Research (2022)
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Inexact approaches

▶ Mostly based on reformulations via an entropic regularization: several papers
by M. Cuturi, G. Peyré, G. Carlier and others

▶ Block-coordinate approach: fix the support and optimize the probability, then
fix the probability and optimize the support [2, 3, 4]

▶ Other approaches [5,6,7]

Exact methods

▶ Methods for computing exact WBs are based on linear programming
techniques [8,9]

2M. Cuturi, A. Doucet. JMLR, 2014
3J. Ye, J. Li. IEEE ICP (214)
4J. Ye et al. IEEE Transactions on Signal Processing (2017)
5G. Puccetti, L. Ruschendorf, S. Vanduffe. JMVA (2020)
6S. Borgwardt. Operational Research (2022)
7J. von Lindheim. COAP (2023)
8S. Borgwardt, S. Patterson (2020). INFORM J. Optimization
9J. Altschuler, E. Adsera. JMLR (2021)
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Our contribution
Exact approach for computing Wasserstein barycenters

We provide an embarrassingly parallelizable algorithm based on the
Douglas-Rachford splitting scheme to compute a solution to LPs of the form

min
p,π≥0

M∑
m=1

R∑
r=1

Sm∑
s=1

dmrsπ
m
rs

s.t.
R∑

r=1

πm
rs = qms , s = 1, . . . , Sm, m = 1, . . . ,M

Sm∑
s=1

πm
rs = pr, r = 1, . . . , R, m = 1, . . . ,M

with given dm ∈ ℜR×Sm
(e.g. dmrs := αm∥ξr − ζms ∥2)

Observe that we can drop the vector p (wlog)
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

min
π≥0

M∑
m=1

R∑
r=1

Sm∑
s=1

d
m
rsπ

m
rs

s.t.
R∑

r=1

π
1
rs = q

1
s , s = 1, . . . , S

1

.

.

.
R∑

r=1

π
M
rs = q

M
s , s = 1, . . . , S

M

S1∑
s=1

π
1
rs = · · · =

SM∑
s=1

π
M
rs , r = 1, . . . , R

≡



min
π

M∑
m=1

⟨dm, π
m⟩

s.t. π
1 ∈ Π

m

.

.

.

π
M ∈ Π

M

π ∈ B

This LP can be solved by the Douglas-Rachford splitting (DR) method

Given an initial point θ0 = (θ1,0, . . . , θM,0) and prox-parameter ρ > 0:

DR algorithm


πk+1 = ProjB(θk)

π̂k+1 = arg min
πm∈Πm

m=1,...,M

M∑
m=1

⟨dm, π
m⟩ +

ρ

2
∥π − (2πk+1 − θk)∥2

θk+1 = θk + π̂k+1 − πk+1

{πk} converges to a solution to the above LP [10]

10H.H. Bauschke, P.L. Combettes. Chapter 25. (2017)
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First DR’s step
Projecting onto the subspace of balanced plans

Given θ ∈ ℜR×
∑M

m=1 Sm
, let

▶ am :=
1

Sm∑M
j=1

1

S(j)

be weights

▶ pm :=
∑Sm

s=1 θ
m
rs the mth marginal

▶ p :=
∑M

m=1 ampm the average of marginals

Proposition
The projection π = ProjB(θ) has the explicit form:

πm
rs = θmrs +

(pr − pmr )

Sm
, s = 1, . . . , Sm, r = 1, . . . , R, m = 1, . . . ,M

This projection can be computed in parallel
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Second DR’s step
Evaluating the Proximal Mapping of Transportation Costs

Proposition
The proximal mapping

π̂ = arg min
πm∈Πm

m=1,...,M

M∑
m=1

⟨dm, πm⟩+
ρ

2
∥π − y∥2

can be computed exactly, in parallel along the columns of each transport plan ym,
as follows: for all m ∈ {1, . . . ,M}, π̂m

1s
...

π̂m
Rs)

 = Proj∆R(qms )


y1s − 1

ρ
dm1s

...
yRs − 1

ρ
dmRs

 , s = 1, . . . , Sm

Here, ∆R(τ) =
{
x ∈ ℜR

+ :
∑R

r=1 xr = τ
}

Every projection onto ∆R(qms ) can be carried out (in parallel) efficiently and
exactly [11]

11L. Condat. Math.Prog. (2016)
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The Method of Averaged Marginals - MAM

Easy-to-implement and memory efficient algorithm to compute WBs

Algorithm
1: Input: initial plan π = (π1, . . . , πm) and parameter ρ > 0

2: Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

3: while not converged do

4: p←
∑M

m=1 ampm ▷ Average the marginals

5: for m = 1, . . . ,M do
6: for s = 1, . . . , Sm do

7: πm
:s ← Proj∆(qms )

(
πm
:s + 2 p−pm

Sm − 1
ρ
dm:s

)
− p−pm

Sm

8: end for
9: pm ←

∑Sm

s=1 θmrs ▷ Update the mth marginal
10: end for

11: end while

This algorithm is embarrassingly parallelizable and can run in a randomized
manner...
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The Method of Averaged Marginals - MAM
Randomized

Algorithm (randomized)

1: Input: initial plan π = (π1, . . . , πm) and parameter ρ > 0

2: Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

3: while not converged do

4: p←
∑M

m=1 ampm ▷ Average the marginals

5: Draw randomly m ∈ {1, 2, . . . ,M} with probability αm > 0
6: for s = 1, . . . , Sm do

7: πm
:s ← Proj∆(qms )

(
πm
:s + 2 p−pm

Sm − 1
ρ
dm:s

)
− p−pm

Sm

8: end for
9: pm ←

∑Sm

s=1 θmrs ▷ Update the mth marginal

10: end while
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Constrained Wasserstein barycenters

Suppose the probability vector p is constrained to a closed convex set X ⊂ ℜR:

min
p,π≥0

M∑
m=1

⟨dm, πm⟩

s.t.
R∑

r=1

πm
rs = qms , s = 1, . . . , Sm, m = 1, . . . ,M

Sm∑
s=1

πm
rs = pr, r = 1, . . . , R, m = 1, . . . ,M

p ∈ X

How MAM can be modified to compute constrained WBs?
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The Method of Averaged Marginals - MAM
Constrained setting

Algorithm
1: Input: initial plan π = (π1, . . . , πm) and parameter ρ > 0

2: Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

3: while not converged do

4: p← ProjX

(∑M
m=1 ampm

)
▷ Average the marginals

5: for m = 1, . . . ,M do
6: for s = 1, . . . , Sm do

7: πm
:s ← Proj∆(qms )

(
πm
:s + 2 p−pm

Sm − 1
ρ
dm:s

)
− p−pm

Sm

8: end for
9: pm ←

∑Sm

s=1 θmrs ▷ Update the mth marginal
10: end for

11: end while
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Unbalanced Wasserstein barycenters

Linear subspace of balanced plans:

B =

π :
S1∑
s=1

π1
rs = · · · =

SM∑
s=1

πM
rs , r = 1, . . . , R


νm, m = 1, . . . ,M , have equal masses

Balanced WB



min
π∈B

M∑
m=1

⟨dm, πm⟩

s.t. π1 ∈ Πm

...

πM ∈ ΠM

νm, m = 1, . . . ,M , have different masses

Unbalanced WB (γ > 0)



min
π

M∑
m=1

⟨dm, πm⟩+ γ distB(π)

s.t. π1 ∈ Πm

..

.

πM ∈ ΠM

How MAM can be modified to compute unbalanced WBs?
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The Method of Averaged Marginals - MAM
Unbalanced Wasserstein barycenter

Algorithm
1: Input: initial plan π = (π1, . . . , πm) and parameters ρ, γ > 0

2: Define am ← ( 1
Sm )/(

∑M
j=1

1
Sj ) and set pm ←

∑Sm

s=1 πm
rs, m = 1, . . . ,M

3: while not converged do

4: p←
∑M

m=1 ampm ▷ Average the marginals

5: Set t← 1 if ρ

√∑M
m=1

∥p− pm∥2
Sm ≤ γ; else t← γ/

(
ρ

√∑M
m=1

∥p− pm∥2
Sm

)
6: for m = 1, . . . ,M do
7: for s = 1, . . . , Sm do

8: πm
:s ← Proj∆(qms )

(
πm
:s + 2t p−pm

Sm − 1
ρ
dm:s

)
− t p−pm

Sm

9: end for
10: pm ←

∑Sm

s=1 θmrs ▷ Update the mth marginal
11: end for

12: end while

Set γ = ∞ to compute balanced WB (if the measures are balanced)
Otherwise, choose γ ∈ (0,∞) to compute unbalanced WB
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Theorem (MAM’s convergence analysis)

▶ (Deterministic.) MAM asymptotically computes a balanced (unbalanced)
Wasserstein barycenter should the measures be balanced (unbalanced)

▶ (Randomized.) MAM computes almost surely a balanced (unbalanced)
Wasserstein barycenter should the measures be balanced (unbalanced)
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Numerical experiments: fixed support R = 1600
We benchmark MAM, randomized MAM, and IBP (Iterative Bregman Projection of [12]) on

the MNIST database with M = 60 images of 40 × 40 pixels. LP’s dimension: 153 601 600

variables and 192 000 constraints

12[J.-D. Benamou et al. SIAM Journal on Scientific Computing. (2015)]
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MAM versus IBP

Wasserstein barycentric distance:

W̄ 2
2 (µ) :=

M∑
m=1

αmW 2
2 (µ, ν

m)

Evolution with respect to time of the difference between the Wasserstein barycenter distance of

an approximation, W̄2
2 (pk), and the Wasserstein barycentric distance of the exact solution

W̄2
2 (pexact) given by the LP. The time step between two points is 30 seconds
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Numerical experiments: free support R = 34 9281

The dataset we use is the one from [13]: M = 10 images of 60× 60 pixels

LP’s dimension: 1.2574 · 1010 variables and 3.5288 · 106 constraints

We compare with the dedicated solver of Altschuler and Boix-Adsera, available at [14]

However, MAM can solve larger problems than the method Altschuler and
Boix-Adsera

13J. M. Altschuler and E. Boix-Adsera. JMLR (2021)
14https://github.com/eboix/high_precision_barycenters
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The optimal value of the WB problem is 0.2666

After 1 hour of processing, MAM had a barycenter distance of 0.2702, which improved to

0.2667 after 3.5 hours, when the solver of Altschuler and Boix-Adsera halts
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Unbalanced WB


min
π

M∑
m=1

⟨dm, π
m⟩ + γdistB(π)

s.t. π
1 ∈ Π

m
, . . . , π

M ∈ Π
M
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Take-away messages

▶ New algorithm for computing WBs which is parallelizable and can run in a
randomized manner if necessary

▶ It can be applied to both balanced WB and unbalanced WB problems upon
setting a single parameter

▶ Can handle additional constraints on the barycenter mass p

▶ It can be applied to the free or fixed-support settings

▶ Our Python code is freely available at
https://ifpen-gitlab.appcollaboratif.fr/detocs/mamwb
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�� ��Thank you!

D. Mimouni, P. Malisani, J. Zhu, W. de Oliveira. Computing Wasserstein
barycenter via operator splitting: the method of averaged marginals,
https://arxiv.org/pdf/2309.05315.pdf, 2023
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