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Motivation and Objectives

The Wasserstein barycenter (WB) is an important tool for summarizing sets of probabilities.

Applications : Applied probability, clustering, image processing, stochastic optimization etc., in data science in general when comparing summarize or reduce dimensions is at stake.
Challenge : Computing a WB (large linear optimization problem) generally exceeds standard solvers’ capabilities. Therefore, the WB problem is often replaced with a simpler approx-
imated optimization model.
Contribution : We introduce an exact method for computing Wasserstein barycenters in the case of finite and fixed support data and provide an effective algorithm that competes
with state-of-the art methods.

1. Model problem and parametrization

We consider empirical measures of the form:

µ=∑R
r=1 prδξr

and ν=∑S
s=1 qsδζs

,

With support defined as finitely many R scenarios {ξ1, . . . ,ξR} for ξ and S scenarios
{ζ1, . . . ,ζS} for ζ. With δu the Dirac unit mass on u ∈Ω, p ∈∆R, and q ∈∆S.

Definition 1 (Discrete Wasserstein Distances) The 2-Wasserstein distance W2(µ,ν) of
two empirical measuresµ andν is the root squared of the optimal value of the following
LP, known as transportation problem

OT(p, q) :=


min
π≥0

R∑
r=1

S∑
s=1

d(ξr ,ζs)2πr s

s.t.
∑R

r=1πr s = qs, s = 1, . . . ,S∑S
s=1πr s = pr , r = 1, . . . ,R

Definition 2 (Discrete Wassertein Barycenter - WB) A Wassertein barycenter of a set
of M empirical probabilities measures ν(m), is a solution to the following optimization
problem

min
p∈∆R

M∑
m=1

1

M
OT(p, q (m))

For empirical measure the WB problem can be written as:

min
p,π

1

M

R∑
r=1

S(1)∑
s=1

d(1)
r s π

(1)
r s +·· ·+ 1

M

R∑
r=1

S(M)∑
s=1

d(M)
r s π(M)

r s

s.t.
∑R

r=1π
(1)
r s = q (1)

s , s = 1, . . . ,S(1)

. . . ...∑R
r=1π

(M)
r s = q (M)

s , s = 1, . . . ,S(M)

∑S(1)

s=1π
(1)
r s = pr , r = 1, . . . ,R

. . . ...∑S(M)

s=1 π
(M)
r s = pr , r = 1, . . . ,R

p ∈∆R,π(1) ≥ 0 · · · π(M) ≥ 0

2. How to solve such a huge scale LP ?

Method of Averaged Marginals - MAM :

Step 1: Given a multi-transportation plan θk

• Marginals p (m),k = θ(m),k1,m = 1, . . . , M

• pk is a weighted average of {p (1),k, . . . , p (M),k}

Step 2: Given θk, pk and distance matrices

• Compute a multi-transportation plan πk by performing
∑M

m=1 S(m) indepen-
dant projections onto the simplex ∆R

Step 3: Givent θk, pk and πk

• Compute θk+1 by a straightforward operation

• Set k = k +1 and repeat

Theorem : The sequence {pk} produced by MAM converges to a WB.

MAM is a new variant of the Douglas-Rachford operator splitting method. This method
has for instance been used to derive ADMM or progressive hedging methods.

3. Qualitative study : MAM vs. IBP

• MAM: Exact algorithm

• IBP: Iterative Bregman Projection is a state-of-the-art algorithm for WB. IBP is based
on an entropic regularization of the problem, thus it computes an inexact WB.

(top) For each digit, 36 out of the 100 scaled, translated and rotated images considered for each barycenter. (bottom) Barycen-
ters after t = 10,50,500,1000,2000 seconds, where the left-hand-side is IBP evolution of its barycenter approximation, the
middle panel is MAM evolutions using 10 processors (CPU) and the right-hand-side is the exact solution computed with
Gurobi.

4. Quantitative study : MAM vs. IBP

IBP, MAM and randomized MAM are compared. IBP computes the exact solution of an
inexact problem tuned through a bounded hyperparameter, therefore it is natural to
witness IBP converging to a solution close but not equal to an exact WB.
MAM converges to the exact solution, it rapidly outperforms IBP in terms of accuracy.

Evolution w.r.t time, of the difference between the Wasserstein barycenter distance of an approximation and the Wasserstein
barycentric distance of the exact solution given by the LP, defined as:

W̄ 2
2 (µk)−W̄ 2

2 (µexact ) :=
M∑

m=1

1

M
OT(pk, q (m))−

M∑
m=1

1

M
OT(pexact , q (m))

60 images are used for the digit ′3′ from the (40x40) centered MNIST databased.

5. Influence of the support

The larger is the support size, the more in-
accurate IBP becomes. Indeed, the greater
is the support size, the more restrained is
the choice of the hyperparameter for IBP,
due to a double-precison overflow error.
Being an exact method, MAM is insensitive
to support size.

40×40 pixel grid, where the red represents the pixels which are
in the union of the dataset support composed by 60 distribu-
tions. (left) for the classical MNIST, (right) for the randomly
translated and rotated MNIST.


